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Abstract

This thesis presents results on optimal coding and decatfinijscrete-time stochastic signals, in the
sense of minimizing a distortion metric subject to a corstran the bit-rate and on the signal transfer
function from source to reconstruction.

The first (preliminary) contribution of this thesis is theroduction of new distortion metric that
extends thenean squared errofMSE) criterion. We give this extension the nakiveighted-Correlation
MSE(WCMSE), and use it as the distortion metric throughoutliesis. The WCMSE iswaeightedsum
of two components of the MSE: the variance of the error corepbancorrelated to the source, on the
one hand, and the remainder of the MSE, on the other. The WCbASHEake account of signal transfer
function constraints by assigning a larger weight to déwiest from a target signal transfer function than
to source-uncorrelated distortion.

Within this framework, the second contribution is the sioutof a family of feedback quantizer
design problems for wide sense stationary sources usindditive noise model for quantization errors.
These associated problems consist of finding the frequessponse of the filters deployed around a
scalar quantizer that minimize the WCMSE for a fixed quansignal-to-(granular)-noise ratigSNR).
This general structure, which incorporates pre-, postd, f@edback filters, includes as special cases
well known source coding schemes suchpatse coded modulatiofPCM), Differential Pulse-Coded
Modulation(DPCM), Sigma DeltaXA) converters, and noise-shaping coders. The optimal frexyue
response of each of the filters in this architecture is fowsrdebich possible subset of the remaining
filters being given and fixed. These results are then applie/érsampled feedback quantization. In
particular, it is shown that, within the linear model usedtl éor a fixed quantizer SNR, the MSE decays
exponentially with oversampling ratio, provided optimétkfis are used at each oversampling ratio. If a
subtractively dithered quantizer is utilized, then theseanodel is exact, and the SNR constraint can be
directly related to the bit-rate if entropy coding is usexjardless of the number of quantization levels.
On the other hand, in the case of fixed-rate quantizatiorS MR is related to the number of quantization

levels, and hence to the bit-rate, when overload errorsegégible. It is shown that, for sources with
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unbounded support, the latter condition is violated fofisigtly large oversampling ratios. By deriving
an upper bound on the contribution of overload errors toated WCMSE, a lower bound for the decay
rate of the WCMSE as a function of the oversampling ratio isyébfor fixed-rate quantization of sources
with finite or infinite support.

The third main contribution of the thesis is the introductiof the rate-distortion functionRDF)
when WCMSE is the distortion metric, denoted by WCMSE-RDFe ptbvide a complete characteriza-
tion for Gaussian sources. The resulting WCMSE-RDF yieddspecial cases, Shannon’s RDF, as well
as the recently introduce®DF for source-uncorrelated distortiof®DF-SUD). For cases where only
source-uncorrelated distortion is allowed, the RDF-SUBxiended to include the possibility of linear-
time invariant feedback between reconstructed signal adercinput. It is also shown that feedback
gquantization schemes can achieve a bit-rate only 0.25&®itgple above this RDF by using the same
filters that minimize the reconstruction MSE for a quanti3&R constraint.

The fourth main contribution of this thesis is to provide aafeconditions under which knowledge
of a realization of the RDF can be used directly to solve eacagcoder design optimization problems.
This result has direct implications in the design of subbaoaters with feedback, as well as in the design
of encoder-decoder pairs for applications such as netwar&atrol.

As the fifth main contribution of this thesis, the RDF-SUD t8ized to show that, for Gaussian sta-
tionary sources with memory and MSE distortion criteriamp@per bound on the information-theoretic
causal RDF can be obtained by means of an iterative numeioakedure, at all rates. This bound is
tighter than0.5 bits/sample. Moreover, if there exists a realization of¢aasal RDF in which the re-
construction error is jointly stationary with the sourdeen the bound obtained coincides with the causal
RDF. The iterative procedure proposed here to obﬁh@D) also yields a characterization of the fil-
ters in a scalar feedback quantizer having an operatiotetinat exceeds the bound by less thaib4
bits/sample. This constitutes an upper bound on the opperdrmance theoretically attainable by any

causal source coder for stationary Gaussian sources Ur@BtSE distortion criterion.
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Chapter 1

Introduction

Design depends largely on constraints.
Charles Ormond Eames, Jr, United States Designer.

There exist but two classes of problems in politics: those
which solve themselves and those which have no solution.

Randn Barros Luco, former Chilean president (1910-1915).

My biggest problem is what to do about
all the things | can’t do anything about.

Ashleigh Brilliant, British Cartoonist.

1.1 Background and Motivation

Many engineering applications require the storage andimngsion of signals so that small distortion
occurs whilst utilizing a limited number of bits. The acheevent of this goal has been one of the
fundamental objectives in signal processing researcle shrebeginnings of the “Digital Era” [1-5].

The mathematical characterization of the trade-off betwidelity and data-rate constitutes the
essence of what is known as Rate-Distortion Theory [6]. Tdwendlations for this theory were laid
by Claude Shannon in [7, 8]. Shannorese-distortion functior(RDF), denoted by?(D), specifies the
minimum bit-rateR required for a given amount of distortidnthat can be achieved anyconceivable
source coding systenk(D) has been characterized, to different degrees, for seperahbility density
functiong(PDFs) and for several distortion metrics [6,9-11]. By fa best understood case of this rate-
distortion trade-off is that which occurs when the sourc&éussian and mean squared error (MSE) is

used as the distortion metric. In this case, for a disciiete-Gaussian stationary random soufgék) }
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8 CHAPTER 1. INTRODUCTION

with power spectral densitfPSD) S, (e’“’), the minimum achievable rate for a given distortibn> 0

is given by the well knowmeverse water-filling equatiofs[6, 9]

1 1 [Su(e®)
w:Sx (eiw)>0
1 T .
D= o /min{@,SX(ew)} dw, (1.1b)
™

wheref > 0 is a scalar parameter commonly referred to as the “watei’levéne relation between

rate, distortion and water level can be easily appreciatdidd example illustrated in Fid-1-(a). In that

—z(k)

w X(k) < é
(b)

A
<
—

£
S~—

Figure 1.1: (a): Graphical representation of the water-filling equations (1.1). The distortion
is represented by the colored area under the plot. (b): Backward test-channel realization of
R(D).

figure, the distortiorD is given by the area under the water legedr the plot ofS, (e’*), whichever is
lower. In turn, only the portion of, (e’*) standing above the water level contributes to the rate, s ca
be seen fromX.19.

Another equally important question in rate-distortionahes finding arealizationfor the rate distor-
tion function for a source. A realization of a rate-distontfunctionR (D) corresponds to a probability
assignment between sourcand its reconstructed approximatigisuch that the distortion i® and the
mutual informatiod betweenx andy equalsR(D). For a discrete-time Gaussian stationary source with

PSDS, (e’*) and using MSE as the distortion metri¢( D) is realized if the optimal reconstruction error
{z(k)} = {y(k)} — {x(k)}
is a Gaussian stationary process independent of the o{ytptit}, with PSD

S,(e’) = min {0, Sx(e’)} . (1.2)

1These equations were first derived by Kolmogorov for comtirastime Gaussian sources in [12].
2The notion of mutual information is formally introduced ie@ion2.3.20f this thesis.
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From the above argument it can be seen that the realizatiB(0j can be represented byest channel
such as the one shown in Fig.1-(b). Since the additive noisgz(k)} is assumed independent of any
other signaknteringthe channel, the arrows point to the left. (Recall that tlierenust be independent
of the output.) Such flow of signals, which may at first sighgreecounterintuitive, is an indication of
the fact that Shannon'’s rate-distortion function cannaadized causally. This implies that, in practice,
infinite delay from source to reconstruction would be reggiito achievé R(D).

Part of the applicability of rate-distortion theory sterrm the fact that knowledge of the RDF, for a
given source and distortion metric, can be used as a gu@glidesign rate-distortion efficieahcoder-
decoder(ED) systems, see [13] and the references therein. Indbedyater-filling equationsl(1)
naturally suggest practical coding paradigms such as aunb-boding and transform coding [13, 14].
Moreover, knowledge of the realization of an RDF can, in gipte, be utilized as the key to solve
optimal source-coder design situations [15]. Unfortulyathis doesn’t seem to be the case for most
practical ED design problems. In fact, a number of limitati@sually arise in practice that preclude the
use of the RDF and its realization to aid in the design of EDspaAs a consequence, not only can the
performance of an ED system significantly depart fr&fD), but also a designer, if aiming for rate-
distortion efficiency, will have to solve an (often difficuttonstrained optimization problem. A brief list

of these practical limitations includes:
1. the analytical intractability of meaningfdistortion metrics
2. signal transfer function constraints
3. architectural limitations
4. quantization and entropy coding constrairasid
5. delay.

Each of these limitations is briefly discussed below.

1.1.1 Distortion Metrics

It is often the case that the most meaningful distortion iogfior the application of interest make the
analytic derivation of the corresponding RDF a formidabtegven impossible, tad19,20]. This is the

case of, for example, elaborate distortion metrics based perception models of human hearing and

3Notice that, in this thesigp achievemeans to construct an ED pair that attains an operatiomaté@i( D) when the distortion

is D, which is more restrictive thato realizea rate-distortion function.
4Except, in some cases, at asymptotically high rates, spe[#65-18].
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vision [20—-23]. The opposite situation occurs with the MS&attion metric. MSE is highly amenable
to analytical manipulation, but fails to adequately ddseperceived distortion in applications such as
image processing [23]. An example of this fact is illustcabe Fig. 1.2. In this figure, the perceived
degradation in image quality produced by linear distor{lomw-pass filtering in images (b) and (e)) is
clearly more significant than that due to additive noise uretated to the original picture (images (c)

and (f)). Nevertheless, the MSE in (b) is equal to the MSE jnTbe same applies to images (e) and (f).

(d) Original (e) MSE = 36.6 (f) MSE=36.6

Figure 1.2: Comparison between the perceived effect of parallel and uncorrelated distor-
tions. (a), (b): Original images; (b) and (e): Low-pass filtered versions (Gaussian blurring);

(c) and (f): Uniformly distributed white noise uncorrelated to the original image added.

1.1.2 Signal Transfer Function Constraints

A number of applications impose constraints on the trarfsfiection from source to the reconstructed
output. This situation arises, for example, when the outiptite decoder is added to the output of one or

more other decoders that generate correlated versions séthe source. Typical examples can be found
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in sub-band coders [24-28] and in parallel quantizatiorswds [29—31]. Although, in these cases, the
signal transfer functions of all ED pairs could, in prin@pbe optimized globally, there are situations in
which the design must be carried out in a modular fashions mappens, for example, when the globally
optimal design is unknown, or when the other parallel enco@eoder pairs have been pre-designed and

cannot be modified.

Another scenario in which the signal transfer function oE&nhpair is important is when the decoded
output is fed-back to the encoder input (together with offignals) through an external feedback loop.

As an illustration, consider a simple networked controteys as depicted in Fid..3. In this scheme,

=

Controller

Decoder Encoder

\

Rate-Constrained Digital Link

Figure 1.3: A simple networked control system. r, d and t represent reference, disturbance,

and plant output signals, respectively.

let us assume that the reference signahd the disturbance signélarewide-sense stationarfv.s.s.)
processes, and that the controller, plant, encoder andideaoe modeled as LTI systems. Suppose that
the controller has been designed, in some optimal semiieout taking into accounthe effect of an
ED pair in the feedback path. This is indeed the case in maagtipal situations, either because the
feedback path was originally a transparent, noise-lesegfiak, or because the joint optimal design of
controller and encoder-decoder is an open problem [32hifnsituation, if an ED pair is inserted in the
loop, as shown in Figl.3 then its associated signal transfer function will afféet tynamic behaviour
of the entire closed loop system. This may severely alteadyo properties such as rise times, settling
times, and overshoot. It can also have an impact on the Hestige rejection capabilities of the closed
loop control system. More importantly, the open-loop sldrensfer function of the ED pair should not
have a negative impact on the stability of the closed loopesys This requirement may be particularly
restrictive for unstable plants. In this situation, it igesf reasonable to design the ED pair so that it
exhibits a unit signal transfer function. In this case, tiiair will not affect the dynamical properties

intended in the original closed-loop design.
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1.1.3 Architectural Limitations

All digital source coding systems are based upon some foiguaiftization, usually in combination with
other blocks, such as filters. In this thesis we restrichétta to cases where all these other blocks are
linear. In addition, when the source is an infinite-lengtid@m process, we will consider, apart from the
quantizer, only linear blocks which are also time-invari@l). Excluding non-linear processing from
our analysis leaves aside techniques such as those basedsistent estimates, see. e.g. [33—-36], encod-
ing paradigms based on matching pursuit [36, 37], and gitosin which all the processing around the
quantizer is linear but possibly time-varying [38—41]. &istbeen shown in [33—36] that non-linear tech-
nigues provide improvements in the reconstruction acquathe cost of additional complexity, when
compared to linear methods. However, encoding schemesd biasa linear pre-and post-processing of
signal samples around a quantizer are widely used in peadtie to their relative computational simplic-
ity.

When all the processing stages around the quantizer aigr lovdy three degrees of freedom are
available, namely: (i) to act on the signal before the quantitiee@r pre-processinyg (ii) to act on the
signal after the quantizer (linepost-processing and (iii) to re-inject the output signal (possibly lingar
processed) to the input of the quantizZien€ar feedback These three degrees of freedom are illustrated

in Fig. 1.4 This architecture includes, as special cases, scalab&umt source coding schemes such

Reconstruction
post-
processingh y

DECODER

Source

% » pre-
processing

guantization

feedback

ENCODER

Figure 1.4: The three degrees of freedom in any scheme that combines quantization with

linear processing blocks: pre-processing, post-processing, and feedback.

assigma-delta(>XA) converters [42, 43]nulti stage noise shapind/1ASH) modulators [44, 45], noise
shaping quantizers [46—49], delayed-decision or “lookaati feedback quantizers [50-54] and DPCM
converters [55, 56], as well as subband coders such asdramsbders [57, 58] and filter-banks [28, 59—
61].

There exist design situations in which one or more of the alirgrees of freedom is not avail-
able. For example, if an audio encoder is to be designed &odsrd compact-disc players, the signal

processing associated with play-back is fixed, and thus twdydegrees of freedom are available: pre-
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processing and feedback. As another example, considertaalggensor with quantized, discrete-time
output. In such a device, the physical variable of interabtreach the input of the (internal) quantizer
through some transfer function (different from unity), @vby the dynamic properties of the transducer
within the sensor. This transfer function, which can be sefinear pre-processing, cannot be mod-
ified (unless, of course, internal transducer reconfigomat viable). This leaves only two degrees of
freedom available for the design of encoder and decodeel&tion to any particular situation, we refer
to constraints on the degrees of freedom available to thignimsof the ED system aarchitectural
limitations.

It is natural to expect that any architectural limitatiorlwsidversely affect the best achievable per-
formance of an ED system. This raises other questions suctHasv much will the best achievable
performance be affected if any of the three degrees of fre@dmot available?” “What is the impor-
tance of feedback?”, “Is feedback always necessary fongity”? More generally, this motivates the

search for the fundamental performance limitations assediwith architectural limitations.

1.1.4 Quantization and Entropy Coding Constraints

Quantization is the process of mapping continuous ammitudnbers (or vectors) into a finite or count-
able set of values. Without the use of other processingpvegtantizers are superior in rate-distortion
efficiency, when compared to scalar quantizers [62]. Néedess, the computational complexity of
implementing vector quantization is usually avoided incticee in favor of (simpler) scalar quantizers.

The bit-rate associated with a stand-alone scalar quaiigigézen by the number of quantization lev-
els of the latter. More precisely, if the number of quantmatevels isL, then the binary representation
of each quantized output takg@eg, (L)] bits, where[ -] denotes rounding up to the nearest integer. Such
combination of quantization and binary-encoding is cominogferred to adixed-rate quantization

It is well known thatentropy codingcan reduce the average bit-rate (or the total number of bits)
required to transmit, or store, the output of a scalar qaan{i63]. Moreover, it has long been rec-
ognized that, for memoryless sources, entropy-coded umizalar quantization performs very close
to Shannon’s RDF at all rates [64, 65]. In entropy coded saglantization, each possible output that
the quantizer can generate is calledyanbol An entropy coder maps each of these symbols to (bi-
nary) words of different length. For this reason, this camaltibn of quantization and binary-coding is
commonly known awariable-rate quantizationlf the entropy coding mapping is from one symbol to
one word (in a sequential fashion) then the word-lengthi¢slfy in bits) of each word depends on the
probability of the corresponding symbol being generateaditioned on all previous symbols already

generated by the quantizeSuch an entropy coder will be referred toesropy coder with memory
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(ECM).

The computational complexity of implementing ECM is oftemiged by using entropy coders that
operatebased only upon the marginal probability distributiofieach symbol. The latter corresponds
to memory-less entropy coding, since, in this case, pasbejsmo not participate in the encoding
of the current symbol. As expected, the excess bit-raterieduby ignoring the past in memory-less
entropy coding is large if the probabilistic dependencevben consecutive symbols is strong, and zero
if consecutive symbols are statistically independent,if.the quantizer outputs a memory-less sequence.
By using either linear prediction, as in DPCM converterqjamrow-band analysis filters, as in sub-band
coders, the memory of the output of the quantizer can be seuThis can mitigate, and sometimes
eliminate, the performance loss of using memory-less pgtomding instead of entropy coding with
memory. However, in terms of the general architecture shiowig. 1.4, this requires the use of adequate
pre-processing and/or feedback. It also requires the dreed design a matched post-processing stage
(e.g., a “colouring” post-filter in the case of predictiveamtization, or a synthesis filter bank, in the
case of sub-band coding). Thus, when using memory-lessmntoding, the non-availability of any of
the design degrees of freedom will have a more adverse effettte rate-distortion performance of the
system, than if an entropy coder with memory could be used.

When encoding a band-limited continuous time source, tegistsituations in which increasing the
sampling rate is preferable (or less expensive) than isargahe number of levels used for quantiza-
tion. This is the case in, for example, digital audio [66]3[&ection 1.1]. The practice of sampling
a continuous-time source above its Nyquist rate is knowovassampling Notice that oversampling
can also be applied to a discrete-time band-limited signatreating interpolated samples between the
original ones. In both the continuous-time and discretettases, the effect of oversampling is a shrink-
age of the support of the spectrum associated with the sam@lgersampling, which can be seen as
an increase in time resolution, makes it possible to congierfsr poor amplitude resolution, i.e., for
coarse quantization. This was recognized early by Benre94i8 [67]. However, in achieving this MSE
reduction, it is crucial to place appropriate filters arotinel quantizer [45,56]. Thus, in oversampled

quantization, the optimal use of the three degrees of fr@estmwn in Figl1.4 plays a fundamental role.

1.1.5 Delay

It is known that for Gaussian sources with MSE as the distorthetric, any realization of th&(D)
function requires infinite (in practice, very large) del&yparticular, the forward-channel realization of
R(D) would require the use of non-causal (non-realizable) §iltsee, e.g., [6, Section 4.5]). This limits

the usability of the RDF (and its associated realizations)}lie design of optimal ED pairs subject to
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delay constraints. Delay constraints are present, for plgnn real-time speech communications and
networked control applications. In the latter case, a dbktyveen the source and its reconstruction is
highly undesirable, since it severely affects the dynamapprties and the noise rejection capabilities of
the closed loop system. Indeed, too much delay can easitieréhe closed loop system unstable, with

catastrophic consequences [68, 69].

The causal rate-distortion function has been charactbamy for memoryless sources or in the limit
as the rate tends to infinity, see, e.g., [70] and the refexetieerein. For sources with memory, and at
medium or low rates, little is known. The solution to the cuate-distortion problem could be helpful

in the design of rate-distortion efficient, causal souragers and decoders.

In addition to the causality of the encoder-decoder paiglaydconstraint may also produce further
performance degradation, if the system is subject to additilimitations. For example, if the digital
communications link between encoder and decoder is ofdinihstantaneous capacity, then the use
of entropy coding (either ECM or MEC), with average bit-ratese to that capacity, will induce time
varying delays. If these delays are not tolerated by theiegtpn, then fixed-rate quantization must
be used. By using non-uniform quantizers, such as the Mayel_fuantizer, the bit-rate of fixed-rate
guantization can be very close to that of a uniform quantidér entropy coding (which has variable-
rate), see, e.g., [71]. However, if only “off the shelf” umifn quantizers are available, then the fixed-rate
quantization constraint imposed by low delay requiremaiiltsentail a performance loss additional to

that already inflicted by the need to use a causal ED pair.

In all of the above situations, the design of optimal enceded decoders cannot benefit from knowl-
edge of the corresponding RDF and its realizatiomdess the RDF has been derived taking account of
the constraints associated with the design probl&sia consequence of this, the search for optimal ED

pairs for constrained scenarios has to be undertaken, ie sense, “from scratch”.

This is, indeed, the central theme in this thesis: the desfgoptimal ED pairs under the above
limitations, by either: i) following a “bottom-up”, congtined optimization approach, or ii) finding,
when possible, the RDF of the underlying problem and theloahg a more expedite, “top-bottom”

approach.
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1.2 Previous Related Work

1.2.1 MSE Extensions

It is possible to distinguish two philosophies in the saos that have been proposed in the existing
literature for narrowing the gap between sources and meadar which an RDF can be found and
those for which it cannot. The first approach is to approxartae application-meaningful (but non
tractable) distortion metric by a simplified version moréadie for analysis and optimization, as done,
e.g., in [72,73]. The second approach is to extend RDF#itig’ distortion metrics to better represent
the impact of reconstruction errors in a wider range of agpions. For example, the extension of MSE
to a frequency-weighted MSE (FWMSE), for which the RDF foiuSsian sources has been derived [74],
has found greater acceptance than plain MSE in areas suddiasgantization [46, 75] and image half-
toning [76, 77]. Nevertheless, frequency-weighted MSE fstiis to adequately measure, for example,

the type of perceptual differences that were illustratatiexan Fig. 1.2

1.2.2 Brief Review of Source Coding Paradigms

For stochastic sources, the problem of optimal design ofitiear processing blocks in the architec-
ture shown in Figl.4 has been solved only for MSE, and under certain constramdsagsumptions.
These results are reviewed below for two important sourdangoparadigms associated with the scheme

depicted in Figl.4

Full-Band Coders:

For a w.s.sscalar processsource with a singlescalar quantizer, the system in Figl.4 can always
be re configured to either of the structures depicted in Rigsand1.6. Both are typical schemes that
can be used to describe sigma-delfa\) converters [42], noise shaping quantizers [46] and DPCM

converters [55]. In these figures, the blodRsA, H, B, andF arelinear time-invariant(LTI) filters,

Weighting
Filter

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1.5: General feedback quantization system.
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Weighting
Filter

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1.6: General feedback quantization system, alternative configuration (equivalent to
the onein Fig. 1.5ifand only if H = A/(1 — F)).

andQ represents a scalar quantizer. The feedback filtaeeds to be strictly causal (i.e., it must have a
delay of at least one sample) for the closed loop to be welhddfisee, e.g., [78, Cha]). The blockP

is a frequency-weighting filter, accounting for the differ@erceptual impact that reconstruction errors
may have at each frequency.

From the viewpoint of the architectural limitations dissed in Sectiorl.1.3 the system in Figl.6
differs from the one in Figl.5in that the former does not require being able to measureighalghat
enters the quantizer. This is compatible with the architectimitation in which the pre-processing is
given and fixed. By contrast, the configuration shown in Ei§, in which one can both inject a signal
prior to @ and measure the result, implicitly allows one to arbityamilodify the pre-processing.

The analysis of the associated feedback system is commiompyified by modeling the quantization
error,

A
n=w-—yv,

as white and uncorrelated with the soutcgs5, 79-83]. Hereafter, we will refer to this simplification
as the Linear Mode] to be formally defined later in Secti@2.2 It must be noted that this model is
actually exact if uniform quantization with dither (eitterbtractive [84] or non-subtractive [85]) is used.
It can also serve as a useful approximation in other case4 2255, 86].

In the Linear Model, the constraint on the bit-rate is uguedpressed as a constraint on the SNR of
Q, i.e., the ratio between the variancesvoindn = w — v in Figs.1.5and 1.6, see, e.g. [55,79-83].
This ratio is denoted by

A

:qw. | <qw

gl (1.3)

Under these assumptions, the design of a rate-distortioriesit full-band coder can be posed as the
minimization of the frequency weighted MSE for a given aneédiwalue ofy, over all filters A, B,
F' (of un-restricted order) satisfying the given architeatwonstraints. Tablé.1 lists several possible

optimization problems that can be obtained assuming @iffiecombinations of filters as being given and
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fixed. We can see from Tablelthat some, but not all cases, have been studied earlier. Wowhese
Table 1.1: Architecture-constrained optimization problems. All cases but Case 7 are asso-

ciated to the system in Fig. 1.5. Case 7 is associated to the configuration shown in Fig. 1.6.

~ denotes the SNR of Q.

Optimization Problem

Case| Given, Find the Existing Results Note
Si(e?“) and | MSE Optimal (for MSE Only)
1 A F B Solution is the standard Wiener filter. -
2 B, F A Solution is the standard Wiener filter -
3 F,AB=W AandB CaselW =1, ' = 0 solved by Noll in [81].| *
4 F AandB CaseF' = 0 solved by *x

Tugan and Vaidyanathan in [87].

5 A B F Results unavailable. The cade= B =1

is a noise-shaping quantizer ok
6 B AandF Results unavailable -
7 H BandF Results unavailable -
8 - A, BandF Solved by **

Zamir, Kochman and Erez in [15].

* The optimal system has “half-whitening” pre-and postefit
** For the casey > L7 \F(ejw)fdw, this problem was first solved in [81].
*** For the casey > % 'fﬂ |F(ej“’)\2dw, this problem was first solved in [81]. The solution

was then re-derived in [88] under the same assumption.

cases consider the MSE criterion only. In this thesis, wé pvidvide a solution to all the problems in
this table as well as extend all of the results to a distortigterion we propose (which receives here the
nameweighted correlatiorMSE).

The optimization problem in the last row of Tallel is of particular interest for this thesis. Itis a
clear illustration of the fact that knowledge of a realipatdf the underlying RDF of a problem can serve
to solve the optimal design problem for an ED pair. This ojtation problem had remained open for

decades. The following is a brief overview of its history:

To the best of the author’s knowledge, the first paper to lookife MSE optimal filtersA, B and F',
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for a giveny, was written by Kimme and Kuo [89] in 1963. In that paper, eld$orm expressions were
derived for optimal frequency responses of the filtérand B as a function of"". These expression were
exact only for the cases in which SE < min,, Sy (e’*). The optimal solution fo~ had to be found
iteratively over the space of all causal and stable filtersl969, Brainard and Candy [80] proposed the
design of the corresponding filters combining some of thelteé [89] together with heuristic criteria
for optimal quantization of television signals. One yedeilaNoll [81] presented simple analytical
expressions for the optimal filters. These expressions ale@ned under the simplifying assumption of
negligible quantization fed back error. Noll showed thaigier this assumption, the optimal filters must
necessarily whiten the input signal prior to quantizatiod,aat the same time, yield quantization errors
whose PSD becomes white after the error weighting filter82j,[Atal and Schroeder study the problem
of optimal filters for noise-shaping-DPCM converters, feiog on the encoding of speech signals. These
authors propose a refined method for the design of the predliiters, matched to the characteristics of
human speech. However, the design of the filter that detesitire noise-shaping characteristics of the
converter is based on heuristics. After a surprising gappf@imately twenty years without further
attempts to solve this problem analytically, an importawinsight came with the work of Guleryuz and
Orchard in 2001 [90]. As in [89], the analysis in [90] yieldsadytical expressions for two of the three
optimal filters using a Lagrangian approach. Here too, ondefilters has to be found by numerical
iteration over the space of all admissible filters. Howeualike [89], these expressions are exact for all
distortion values, i.e., for all bit-rate regimes. More ionfantly, [90] seems to have been the first paper
to study the rate-distortion performance of DPCM at lowrhies, suggesting that scalar quantization
with feedback is (nearly) optimal, not only at high ratesr@gsognized in, e.g., [55, 59]), but at low bit
rates as well. A fully analytical solution to this optimiiat problem finally appeared in recent work by
Zamir, Kochman and Erez [15]. Of key importance is the faat the solution in [15] wasot derived

by solving a constrained optimization problem. Instead,abthors in [15] start frorknowledge of the
forward channel realization of Shannon’s Rate-Distortfanction for Gaussian sources with memory
Working from this, and following aleductivemethod based on mutual-information equalities, optimal
performance, using an entropy coded dithered quantizehads/n to be).254 bits per sample above
Shannon'sk(D), at all rates In [15], the optimal filters are not explicitly charactez, but closed form
expressions can be obtained from other results in the pdijgersame additional work. This example
illustrates one of the key ideas to be developed in this $h&sidetermine how and when the design of
optimal ED pairs can be solved directly from knowledge ofairation of the underlying rate-distortion

function.

Itis also of practical importance to characterize the biaireable performance of the scalar feedback
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quantization system in Fid..5as a function of theversamplingratio. As mentioned in Sectioh1.4
oversampling (i.e., sampling a band-limited continudosetsignal at a frequency above its Nyquist rate)
allows one to achieve a smaller MSE error for a given, fixed lbeinof quantization levels. For instance,
the MSE of simple scalar quantization (without feedbackiswn to decrease as !, where) is the

oversampling ratipgiven by
» Sampling Frequency
~ Nyquist Frequency

see [67]. The latter result has recently been extended tergeredundant expansions in [91]. In turn,
it has been shown in [56] that feedback scalar quantizersattain an MSE that i€ (\~2(m+1)) as

A — oo, Wherem is the order of the feedback filter. (See also recent work 8+4®, 92, 93]). From

a rate-distortion viewpoint, the inverse polynomial erdeicay of this error estimate is “too slow” to
compensate for the increase in the overall bit-rate due ¢éosawnpling (which is proportional tv). To

be more precise, let us consider a scalar quantizer With 2° quantization levels, wheredenotes the
quantization resolution in bits per sample. If the addilonit-rate caused by oversampling were to be
utilized instead to increas¥, the MSE would decay a8(2-2%"), i.e., exponentiall.

A faster decay rate of the MSE of oversampled FQ witban be achieved by selecting a different
feedback filter (of possibly different order) for each ownpling ratio. An example of such a family
(of 1-bit XA converters) was given in [95]. Here, for uniformly boundeguts, the continuous-time
reconstruction error can be uniformly bounded\oy '° *, wherep > 0 is independent of. This bound
guarantees an MSE that decays witas©Q(\~271°¢ %) which is faster than any inverse polynomial, but
still far from exponential. Based on this result, the fanaifyl-bit > A converters reported in [96] achieve
an MSE that ig0(270-14%), i.e., exponentially decaying with increasing Note that the results in [95]
and [96] were obtained using an exact, deterministic moaletjfiantization. The author is not aware
of results on exponential error decay with oversamplingriatfeedback converters having a multi-bit

scalar quantizer or dealing with unbounded support solfrces

Subband Coders:

The case of the system in Fij.4in which a w.s.s. source is decomposed into different bandgteen

quantization is carried out using independent and pamliahtizers corresponds to the typical setting in

5Strictly speaking, this has been shown to hold only for digménose PDFs have finite support. Indeed, it has been shown
that for several infinite support source PDFs, the MSE ofarmf quantization decreases asymptotically withot faster than

(In2)?/a ba2-2b wherea > 0 is a constant independent ifsee [94].
6There exist results showing that an exponential error dedgly increasing oversampling ratio can be achieved when the

guantization threshold crossimgstantsassociated with aontinuous timesource are encoded [97-99]. This falls outside of the

“first sample and then quantize” paradigm in which this théisi.
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filter-banks (FBs) andsub-band codingSBC) [59]. A typical subband coder is shown in Fig7. In
that figure, the pre-processing stage takes the form of a dahk analysis filtersH; (z) (analysis filter
bank) followed by decimation (down-sampliig)The latter process is represented by the blocks,

as shown in Figl.7. Each subband signal is quantized using a separate scalar quantizer, laliled

x Ho(z) |o{iM o 0 |—"0 1M || Ho(x) |

Hl(z) |—>|lMI L' =@ Wi =I TM |—>| ﬁl(z) }_A

Y

L>|HM—1(Z)|—’|J,MI Sl @ WM71=I ™ HﬁM—l(Z)}_T

Figure 1.7: M-channel subband coder with analysis filters H;(z) and synthesis filters
Hi(2).

The output of each quantizer is then up-samplédimes (zero padding). This operation is represented
by the blocks| M in Fig. 1.7. The output is then fed to the corresponding synthesis fﬁtﬁ(fz). The
down-sampling allows the inner section of the filter bank pemte atl /M times the sampling rate of
the input sequencéx(k)}. As a consequence, the total bit-rate is given by the aveshgee bit-rates
associated with each quantizer. Another consequence ohdgan is the introduction of delay, of at
leastM samples, between the source and its reconstruction.

Traditionally, the focus in the subband coding literatuae heen operfect reconstructio(PR) filter-
banks, i.e., on filter-banks where quantization is the oolyrce of reconstruction error (see, e.g., [59,61,
100-105]). When quantization errors are uncorrelated thighsource, the PR condition is a special case
of the signal transfer function constraints discussed icti®e 1.1.2 However, the motivation for PR
in the filter bank literature seems to originate from the cledor aliasing-free analysis/synthesis banks
in the absence of quantization, rather than being a respgonsectical situations where a unit signal
transfer function could be beneficial. (The papers [106] 467 an exception.) The study of filter banks
that do not satisfy the PR property began a few years lated[#5-113]. Non-PR filter banks sacrifice
the PR property in exchange for achieving lower MSE. Howgethezir superior performance can be
critically dependent on accurate knowledge of the stasigif the source [103].

For the case of th€erfect Reconstructiononstraint, it has been shown by Moulin, Anitescu and

Ramchandran that optimal FBs are, in general, biorthog@®alCorollary 3.2]. This fact had already

7 In the equivalent, but computationally more efficient, piigse representation, the decimation (preceded by diffdedays)

takes place before a (modified) analysis filter bank, see,[8Y].
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been suggested by the results reported by Aase and Ram$§24d.imhe work in [86] also shows that an
optimal PR filter bank can always be constructed as a cas¢adeamaunitaryrincipal component filter
bank(PCFB) followed by a set of pre- and post-filters placed addiie quantizer in each subband. The
paper [86] additionally gives analytic expressions for dptimal analysis/synthesis FBs, and provides

an iterative method to find the optimal bit-allocation.

For theNon-Perfect Reconstructiaase, expressions for the optimal synthesis FB, for a givaf a
ysis FB and a given bit-allocation, have been derived in [atdl [108]. The latter paper also proposes
an iterative method for joint design of analysis/synth€8s and associated bit-allocation. In a more
recent paper [113], Mih¢ak, Moulin, Anitescu and Ramchrandierive expressions for the optimal anal-
ysis/synthesis FBs for a given and fixed bit-allocation. yrakso propose an iterative algorithm for the
computation of globally optimal filters and bit-allocatiott is also shown in [113] that, as in the PR
case, an MSE optimal, non-PR FB can always be constructedascade of a paraunitary FB followed
by a set of pre- and post-filters placed around the quantizeach subband. Nevertheless, in general,
for the non-PR case, the FB in the first stage of the cascadensyseed not be a principal-component
filter bank [113, Remark 4].

Feedbacki.e., the third degree of freedom in the general architedepicted in Figl.4, has received
relatively scarce attention in the subband coding litesat@he use of feedback in subband coding first
appeared with the use of DPCM converters, instead of plaatasguantizers (PCM converters), to
quantize each subband signal more efficiently (see, e 3p]J1Feedback in subband coding has been
shown to be beneficial (in the sense of improving rate-distoperformance) in other situations as well.
For example, in [61], Bolcskei and Hlawatsch show that beetk is effective in reducing reconstruction
MSE in oversampled filter banks. Fisher proved in [116] thattate of a standarmguadrature mirror
filter bank (QMFB), without feedback, is strictly above the rate-dititm function, except for special
cases of the PSD of the source. Then Wong showed in [117]katte of cross-band prediction (a
special case of feedback in the scheme of Eig) allows a QMFB to achieve asymptotically optimal
rate-distortion performance at high rates. In a recent papé/akur and Arunkumar [28], the use of
feedback is also shown to improve rate-distortion efficgendiorthogonal subband coders by reducing
(and in some cases eliminating) what is knowrgaantization noise amplificatiorQuantization noise
amplification is defined as the ratio between quantizatiaseneariance in the reconstructed signal and
the average of the variances of quantization noises intedlin each subband. This ratio is unity for
paraunitary filter banks (where there is no quantizatios@aimplification), but is greater than unity in
all perfect reconstruction biorthogonal subband code8$. [ANlevertheless, to the best of the author’s

knowledge, the problem gbintly designing optimal filters and bit allocation for subband exsdwith
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feedback has not been solved. Hence, the optimal achiepalflermance of a subband coder with three
degrees of freedom remains an open problem, except in tliteakinthe rate, or the number of subbands,

tends to infinity.

1.2.3 Related Existing Results on Causal and Delay-Free Soe Coding

Itis known that full-band source coders, such as PCM, DPCi/bafy converters, do notintroduce delay
between source and reconstructed signal, as long as alidhand post-filters do not introduce delay, see
Fig. 1.5 However, it is not known how to design an optimal scalar Bestt quantizer satisfying a finite-
(or zero-) delay constraint. As mentioned in Sectlo?.2 the bit-rate of the predictive converters found
in [15], which use subtractive dither and entropy codingriy 0.254 bits per sample above Shannon’s
RDF, for Gaussian stationary sources. Unfortunately, thwerters described in [15] require the use of a
non-causal pre- or post-filter. In practice, these wouldiiede approximated by filters which introduce
a (possibly) long delay. On the other hand, all the filtershim ¢ptimal perfect reconstruction feedback
quantizers obtained by the author (and colleagues) in [&68Fausal. Therefore, these converters can
be considered the best zero-delay source coders for wosuses described to date. However, being
PR converters, it is clear that these ED pairs are still quii¥@l, within the class of zero-delay source
coders. This can be easily verified by noting that applyingwseal Wiener filter [119], which violates the
PR constraint, to the reconstructed signal in a PR convéstguaranteed to reduce distortion without
introducing delay.

In the subband codingSBC) literature, causal (zero-defyransform coders were first proposed
in [120] by Habibi and Hershel, as an alternative to princgmmponent transform coders (such as the
Karhunen-Léve TransformKLT, see [121]). Unlike KLT coders, causal transform cadese only tri-
angular matrices for analysis and synthesis. The cost éé@alg causality, in this case, is quantization
noise amplification. The latter arises from the fact thairtgular matrices cannot be unitary, and thus are
not energy preserving (except for the identity matrix). dieg the quantization error associated with one
transform coefficient to the next coefficidmtforeit is quantized, in a sequential fashion, reduces quan-
tization noise gain, improving rate-distortion perforrnanThis technique can be seen as a special case
of feedback in the general architecture depicted in Eig. Using the Linear Model (see SectibR.2),
it was shown by Phoong and Lin in [57] that careful design eflthear feedback componentin a causal
transform coder can, at high rates, bring the theoreticahtjpation noise gain down to unity. In such

cases, the performance of causal transform coding equaleftkKLT [57]. Notice that this is analogous

8The requirement of zero-delay is stronger than causalisystem can be causal and yet introduce arbitrary delay. riteless,

the term “causal transform coder” is commonly used to referetro-delay transform coders.
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to the results mentioned above regarding biorthogonat filéeks as reported in [28]. The extension of
causal transform coders to general subband coders is asosged in [57]. The author is unaware of
any other paper analyzing the design of SBCs. It is also itapoto note that the linear model analysis
carried out in [57] and [28] assumes that fed-back quarndimagrrors negligible variance. Thus, it is
accurate only at high rates.

From a rate-distortion theoretical perspective, therstgartial results on theptimal performance
theoretically attainablOPTA) with zero-delay codes and causal source coding.s@&mni¢122], and
Gaarder and Slepian [123, 124], have shown that, for i.bdrees, and under fixed-rate and zero-delay
constraints, optimal rate-distortion performance is eehd by PDF-optimized scalar quantization. Other
results have been obtained considering the less restriatition ofcausalityinstead of the requirement
of zero end-to-end delay. This notion receives the naausal source codings introduced by Neuhoff
and Gilbert in [125]. Under this concept, an encoder-decpde is deemed causal if the reconstruction
of the current sample in the decoder is a functiorooly the current and past samples of the source.
Notice that this definition allows for arbitrary delays iretantropy coding of the quantized samples. It
is shown in [125] that for memoryless sources, the OPTA iseaeldl by time sharing between, at most,
two entropy-constrained optimal scalar quantizers. It lates shown by Linder and Zamir that, for high
rates, the cost of requiring causality in source-codingjaraximately0.254 bis/sample with respect to
Shannon’s RDF [70]. Itis also known that, for any source arahg rate-regime, the mutual information
rate across aadditive white Gaussian noifAWGN) channel is not more than 0.5 bits/sample above
the corresponding rate-distortion function [126]. By ddesing the use of subtractively-dithered scalar
quantizers and entropy coding, this yields an upper bounith&oOPTA in causal source codinglaf54
bits/sample above the non-causal RDF. However, it is unknehether causal source coders can out-

perform this bound.

1.3 Overview of the Main Contributions

The main contributions of this thesis are as follows:

1.3.1 A Two-Parameter Frequency-Weighted MSE

The first contribution of this work is an extension of the MSiiterion to better address perceptual
phenomena such as those shown in Eig, and to account fasignal transfer function constraingich
as those discussed in Sectibid.2 This measure consists of a weighted sum of the varianceedfiBE

component which is uncorrelated to the source, on the oné, lzend the remainder of the MSE, on the
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other. We give a formal definition to this distortion metnicthe following.
For a random scalar soursereconstructed as with reconstruction erroz = y —x, the mean
squared errorg? = E [ZQ], can always be decomposed into two terms, nansgyrce-uncorrelated

error

andsource-parallel error

Dt 252 — UZ;‘ (1.4a)
and thesource-parallel distortion
pl 2 "f;, (1.4b)
such that
MSE = D+ + Dl (1.5)

As an extension of the MSE, th&keighted Correlation Mean Squared ErrfdfVCMSE) betweerx and

y is defined in this thesis as:
Das(x,y) 2 aD*t + 0D, (1.6)

whereq, b are real positive coefficients. In the particular case ofesgandom sourced)- and D!l are

asin (L.4). For aw.s.s. random process soufgék)} with reconstructiody(k)} = {x(k) + z(k)},

1 /" . S,x(e39)?

La 1 joy _ 122\ 1
D& —~ [ ) lsz(e e e (2 (1.7)
plal (" ’Szvx(ejw)fd 1.8
s %/4 R (1.8)

whereS, andS, are thepower spectral densitig®SD) of{x(k)} and{z(k)}, respectively, and,, . (e’*)
is the cross-spectral density betwefgtk)} and {x(k)}. For a vector random sourse € R having

covariance matri¥< y, we have

1 1
La b L —1 T
D* &~ {K,}) Ntr{Kz_,xKx Kz_’x} (1.9)
1
Dl 2 Ntr{Kz,xKglKgx}, (1.10)
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wherez = y —x andK ,  is the cross-covariance matrix betwessndx. Notice that setting = b = 1
yields the standard MSE criterion.

Reconstruction errors produced by linear processing, aaditering, are part of the source-parallel
distortion term. These have no impact on the source-uneteckterm. Thus, by choosirtg> a, it is
possible to assign a larger cost to deviations of the sigaakfer function of an ED pair from a target
transfer function. This allows WCMSE to take account of,dmample, the perceptually greater impact
of linear distortion in images such as those illustratedign E.2, or signal transfer function constraints
such as those described in Sectloh.2 In particular, lettindg — oo yields a distortion metric which is in
agreement with the situation where linear distortion istotdrated. The design of source coder-decoder
pairs that minimize the bit-rate for such a distortion newill yield optimal unity transfer function (i.e.,
perfect reconstruction) source coders

For the case of random processes and random vectors, iightforward to combine the WCMSE
with frequency weighting. To be more precise, if the frequyesensitivity to each distortion term is the

same, say’(e’*), then the frequency-weighted WCMSE becomes

Sy.z(e79) 2 Sy, (e79)

1 [7 2 » 1 7 o

a5e) |PE)
Obviously, frequency weighted WCMSE includes frequencigiveed MSE as a special case. Fur-
thermore, provided appropriate values foandb are chosen, frequency weighted WCMSE will be su-

perior to frequency weighted MSE in all applications whevarse-correlated distortion has a different

impact than linear distortion.

1.3.2 WCMSE Optimal Frequency Responses for

Scalar Feedback Quantizers

The second contribution of this work is the derivation of ttegjuency response of the filters in a general
feedback scalar quantization system that minimize theugaqy weighted WCMSE, for a given quan-
tizer SNR constraint, and for any choice of weight$. This optimization problem is solved for various
combinations of filters being fixed and given as listed in @dbll. Since the WCMSE is novel to this
thesis, the solutions are new and include MSE-optimal §ileex special cases. For example, for the last
problem in Tablel.l, the results presented here inclutie first optimization-basederivation of the

optimal filters characterized by Zamir, Kochman and EreA B

SWith the choices = 0, any optimal ED pair would yield no linear distortion, buetiource-uncorrelated distortion would be

unbounded, which makes this extreme case of little prddtiterest.
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These results are then applied to design a family of scatatfeck quantizers whose WCMSE de-
cays exponentially with the oversampling ratio, for a fixeguqtizer SNR, assuming overload errors are
negligible. If a subtractively dithered quantizer is a#d, then the noise model is exact, and the SNR
constraint can be directly related to the bit-rate if emyropding is used, regardless of the number of
quantization levels. It is shown that in optimal feedbachmfirers with entropy coded dithered quanti-
zation, the WCMSE decays with the oversampling ratid@s’>*. In the case of fixed-rate quantization,
the SNR is related to the number of quantization levels, araté to the bit-rate, when overload errors
are negligible. It is shown that, for sources with unbounsi@gport, the latter condition is violated for
oversampling ratios sufficiently large. By deriving an uplpeund on the contribution of overload errors
to the total WCMSE, a lower bound for the decay rate of the WENAS a function of the oversampling
ratio is found for fixed-rate quantization. To the best ofdla¢hor’s knowledge, this is the first bound of
this type that takes into account overload errors. This m#ke result applicable to the characterization

of the oversampling efficiency of feedback quantizers abdimg signals having unbounded support.

1.3.3 The Rate-Distortion Function for Gaussian Sources \th
WCMSE as Distortion Measure

The third contribution of this thesis is the derivation oé ttate-distortion function for Gaussian sources,
when WCMSE is used as the distortion metric. This RDF, dehbteR,, ;,(D), yields the well known
water filling equations whea = b = 1, and theRDF for source uncorrelated distortioriz" (D), which
was recently introduced by the author in [127], wher= 1 andb — o0.° In addition, R+ (D) is
characterized for the case in which there exists LTI feekbatween the output and the input of the ED

pair.

1.3.4 Using Realizations of the RDF to Design Optimal Sourc€oders

Itis shown in this thesis that, under the Linear Model, theM&E-optimal filters in feedback quantizers
having three degrees of freedpsubject to a quantizer SNR constraint, are also WCMSEy@itivhen
the constraint is thend-to-end mutual information ratnd the quantizer is substituted by an AWGN

channel. These results provide conditions under which tiveviedge of a realization of the underlying

10 1t may seem at first surprising that fixing = 1 and lettingb — oo yields only source-uncorrelated distortion. This
apparent contradiction is clarified by noting that a largueaf the weightb implies that, in order to minimizeD,, ; for a
given rate, source-parallel distortion should be smaikeit is more expensive than source-uncorrelated distortn the limit as
b — oo, source-parallel distortion is infinitely expensive, ahdd the minimization oD,, ;, can only allow for source-uncorrelated

distortion.
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rate-distortion function can be used as a guideline to deggimal ED pairs. Necessary and sufficient
conditions for the equivalence between the quantizer-Shifstrained optimization problem and the
Mutual-Information-Constrained optimization problene dound. This insight is then further extended
to other implementations (filter banks and transform codétls feedback) of the general architecture

shown in Fig.1.4.

1.3.5 Results on the Causal Quadratic Gaussian Rate-Distioon Function

By using R+ (D) as a starting point, an iterative method is found for obtajran upper bound on the
information-theoretic causal RDF for Gaussian statiorsmyrces under the MSE distortion criterion.
It is shown that this method always converges, and that thmdhothus obtained, is tighter th&mb
bits/sample. Moreover, if there exists a realization ofittfiermation-theoretic causal RDF in which the
reconstruction error is jointly stationary with the soyrtten this bound coincides with the information-
theoretic causal RDF. In addition, the method yields thguesncy response of the filters incausal
scalar feedback quantizer which achieves a @0d2&4 bits/sample above the latter bound. This consti-
tutes an upper bound on the optimal performance theorigtainable by any causal source coder for

stationary Gaussian sources under the MSE distortiorricnite

1.3.6 Summary of the Main Contributions
Summarizing, the main contribution of this thesis are:

1. A novel extension of the MSE beyond frequency weightirgnad WCMSE, is presented, to

incorporate signal transfer function constraints.

2. In Chapter3, feedback scalar quantization optimization problems \aitthitectural constraints
are solved, using the Linear Model and the WCMSE as distortietric and the quantizer SNR as
the bit-rate constraint. These results are applied to desiigmily of scalar feedback quantizers

whose WCMSE decays exponentially with the oversamplirig r&dr a fixed quantizer SNR.

3. In Chapte#d, the RDF for the WCMSE as the distortion metric is introduaad then completely
characterized for Gaussian sources. This RDF is then estktuicases where there exists LTI
feedback between reconstructed signal and source. The&atiphs of this result for networked

control theory are also discussed.

4. In Chapteb, conditions and principles are found upon which end-to-endual information and

guantizer SNR are equivalent constraints in the design ob@er-decoder pairs for minimum
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WCMSE. It is also shown how this result can help in the desfgsptimal subband coders.

5. In Chapte, it is shown that, for stationary Gaussian sources with nrgnam upper bound can
be obtained for theausal WCMSE rate-distortion function by means of an iterativeqadure.
This bound is equal to the causal RDF if the latter admits Bzagéon in which the reconstruction

error is jointly stationary with the source.
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Chapter 2

Preliminaries

A good notation has a subtlety and suggestiveness
which at times make it seem almost like a live teach.

Attributed to Bertrand Russell, British mathematician goidlosopher.

My greatest concern was what to call it. | thought of callibgjmformation”, but the word
was overly used, so | decided to call it “uncertainty”. Whediscussed it with John von

Neumann, he had a better idea. Von Neumann told me, “Youglealllit entropy, for two
reasons. In the first place your uncertainty function hashbesed in statistical mechanics
under that name, so it already has a name. In the second packemore important, no one
really knows what entropy really is, so in a debate you wilVays have the advantage”.

Claude Shannon, United States electronic engineer andanatician.

2.1 Notation

N is the set of natural numbers.

e 7 is the set of integer numbers.

R is the set of real numbers.

C is the set of complex numbers.

x, X, lower and upper case italic letters are used for scalars.

x lower case italic bold letters are used for vectors.

X uppercase italic bold letters are used for matrices.

{z(k)} is used for infinite length sequences.

31
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z¥ is a short-hand notation for the semi-infinite length segedn(i)}*____, k € Z.
«% is a short-hand notation for the finite length sequehe@)}r_;, j, k € Z.

x* denotes the complex conjugate:of

X7 denotes the transpose of the matkix

X' denotes the Hermitian (conjugate-transpose) of the mafrike., X 7 = (X7)*.
X T denotes the Moore-Penrose pseudo-invers¥ of

tr { X'} denotes the trace of a matrX.

| X'| denotes the determinant of the matix

| X |, ¢ denotes theveak matrix nornof X, see Definitior2.5below.

|| X || denotes thetrong matrix normof X, see Definitior2.4below.

X, ~ Y, denotes asymptotic equivalence between the sequencednidesX , andY,, see

Definition 2.7 below.

Ai(X) denotes the-th eigenvalue of the matriX, where);(X) > M\ { X} if ¢ > j.
diag{xy} is a diagonal square matrix (of appropriate dimension)y diagonal elements;.
1 is the identity matrix (of appropriate dimension).

x, X, X non-italic fonts for random scalars, vectors and matrices.

E[-] denotes the expectation operator.

02 = E[xx*] (= E[x(k)x(k)*]) is the variance of the zero-mean random variable x (or the-ze

mean w.s.s. procesg(k)}).

ox,y = E[xy*] is the covariance between the two zero-mean scalar randoablesx andy.
K = E[xx'"] is the covariance matrix of the random vector

K, x = E [zx'"] denotes the cross-covariance matrix between the randoiorse@ndx.

S, (e’*) denotes thgower spectral densitfPSD) of the wide sense stationary (w.s.s.) random

processx(k)}.
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o O, (e7%) = /S (esv) is the square root of the PSD of the w.s.s. random prope(&s }.

e L2 andL! are sets of all complex-valued functions that are squaegiable and absolutely inte-

grable ovef—m, 7], respectively.

e (/2 and/! are sets of all complex-valued square integrable and atedplintegrable sequences,

respectively.
e (-,-) denotes the inner product between its arguments In paaticul
— If F(e/¥), G(e?*) € L% then(F,G) = £ [T F(e7*)G(e*)* dw.
—If f(-),9(-) € I?, then(f, g) = 5= ["_ f(z)g* (x)da.
e |-|| denotes the-norm/(-,-)".

e |-/ denotes thex-norm. For a sequendex(k)}, |||/ corresponds to thé,, norm||z|. =

maxgez {|z(k)|}. For afunction of a continuous variabfe [a,b] — R, it correspondsto thé .,

norm || fllee = max,e(q4 {f(x)}.

e N} denotes the null-space of the function, mapping or transétion f, i.e., the set of arguments
whose image thougfiis zero. (With some abuse of notation, for a discrete-timarieo transform
F(e'%) we write Ny = {w € [—-7,7] : F(e/*) = 0}.)

2.2 Definitions

To simplify notation, we introduce the operatey™!, defined as follows:

Jw\—1
o)1 = F(e/v) . Yw ¢ Np 2.1)

h , Ywe NF,
whereF : C — R s any given function angldenotes any arbitrary and positive bounded value.

Definition 2.1 (Gateaux Differential [128]) Let X be a vector space and” a functional fromX to R.

TheGateaux differentiadf 7 at f € X with increment, € X is defined as

sV 2 Ly(fran)| (2.2)

do a=0

if the above derivative exists.
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Definition 2.2 (Similarly/Oppositely Functionally Related)We say that two functions, ¢ : [a,b] —
R aresimilarly functionally relatedff there exists a monotonically increasing functi6ff-) such that
o(x) = G(x)), for all x € [a,b], and write¢ 11 <. Similarly, if there exists a monotonically
decreasing functiot'(-) such that(z) = G(¢(x)), forallz € [a, b], we say thap andi) areoppositely
functionally relatedand write¢ 1| . A

Definition 2.3 (Almost Constant Function)A function f : [—m, 7] — R is said to be almost constant iff

dz = 0. (2.3)

] @)= 5] s
A

Definition 2.4 (Strong Matrix Norm [129]) Thestrong nornof a matrix A, denoted by A||, is defined

as

1/2
IA 2 max [zHAHAz} = max|\;(4) (2.4)

z:zHz=1
A

Definition 2.5 (Weak Matrix Norm [129]) TheHilbert-Schmidtor weak nornof a matrixA € RV*N,
denoted byA|, ¢, is defined as

Alys £ (% fr {AHA})W = <% ZL |Az-<A>|2)1/2. (2.5)
A

Definition 2.6 (Wiener Class Toeplitz and Circulant Matrices [129Fpr a given functionf € L' :
[—m, 7] — C, having absolutely summable inverse discrete-time Fodn@nsform, the Toeplitz matrix

T, (f) € R**is defined element-wise as

1 /7 )
[To(f)] o 2 > (w)e/=mldy mon=0,1,....0—1. (2.6)

Similarly, the circulant matrixC,(f) € R**¢ is defined as the circulant matrix whose top row is given

by

T

1
f@rk/0)d2Rme/t -y =0,1,...,0—1. (2.7)
0

CelP i 2 7

=~
Il
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Definition 2.7 (Asymptotically Equivalent Sequences of Matrices [129]))o sequences 6k ¢ matrices

{A¢}2,, {B¢}32, are said to beasymptotically equivalentienoted by

Ay~ By,

1. A, and By are uniformly bounded in the strong (and hence in weak) noem,
| A [|[Be|| £ M < 00, £=1,2,..., (2.8)
and
2. D, £ A, — B, goes to zero in the weak norm &s- o, i.e.,

gli,rgo|Aé_Bé|HS :ZEIBO|D|HS =0 (29)

2.3 Basic Information Theoretical Concepts and Results

The following is a brief list of some of the information thetical quantities and properties that will
be useful in the derivations carried out in this thesis. Foofs and insightful descriptions about these

concepts and results, the reader is referred to, e.g.,§3]9,

2.3.1 Entropy

Definition 2.8 (Entropy of a Discrete Random VariableJhe entropy of a discrete random variable

taking values from a countable S&f with probability mass functiops(-), is defined as

H(x) £ =" py(@)log(p« (@) (2.10)

zeX

A

If the log(-) in (2.10 is taken to bdog,(-), then the units of the entropy afarebits. If instead we

useln(+) in place oflog(-) in (2.10, then the units of{ (x) arenats. For any discrete random variable

H(x) > 0. (2.11)
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Definition 2.9 (Entropy of an Ensemble of Discrete Random Variabl&3)e entropy of an ensemble of
discrete random variable$x;, xs, ..., xy}, €ach of them taking values from countable géfs} % ,,

with joint probability mass functiopy, ... x, (+), is defined as

H(x) = — Z .- Z Dscyooin (X155 ZN) 108Dy, oxn (15, TN)) (2.12)

z1€X; znyeXy

A

Definition 2.10 (Conditional Entropy for Discrete Random Variable#) (x,y) ~ pxy(:, ), thecondi-

tional entropy H (x | y) is defined as

H(y|x) 2 po@)H(y|x =) (2.13)
reX
= pe() Y by x(yl2) log(py |« (y]2)) (2.14)
reX yeY

The notion of entropy can also be applied to continuous randariables:

Definition 2.11. Thedifferential entropyof a continuous random variablewith PDF f,(-) is defined

as

h(x) £ — / fe() log (o)) e, (2.15)

zeX

whereX is the support offx(+).

Unlike discrete entropy, differential entropy can be nagatndeedp(x) is differential in the sense
that it is relative to the entropy of a random variablalistributed uniformly over a unit-length interval.
Such a random variable will have zero differential entroplus, if the differential entropy is 2 bits,
this means that its entropy 2sbits higher than that of the uniformly distributed randomiale u.

Itis easy to verify that the differential entropy of a Gaassscalar random variabig; ~ N(0,02 )

'Y XaG

h(xg) = %logQ(Qweaic) bits. (2.16)

Definition 2.12. Thejoint differential entropy of a continuous random vectowhose elements have

joint PDF fy(-) is defined as

h(x) £ / f () Jog( f () dez, (2.17)

zeX

whereX is the support offx(-).
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For two continuous random vectoxsy having joint PDFfy (-, -), the conditional differential

entropy h(y|x) is defined as
v 2 = [ fry(@9) 108 fye(yla)dyde (2.18)

It is often useful to decompogey | x) as

h(ylx) = h(x,y) — h(x) (2.19)
which holds if and only if each of the differential entropieg2.19 is bounded.
Property 2.1. h(y) > h(y|x), with equality if and only ik andy are independent.

Property 2.2. h(y|x) > h(y|x,z), with equality if and only ify andz are conditionally independent
givenx. (See also Definitio2.180on page39.)

Property 2.3. h(y,x) < h(x) + h(y), with equality if and only ik andy are independent.
Property 2.4. If x is a scalar random variable andis some arbitrarily constant,
h(x+c) = h(x). (2.20)
Property 2.5. If x is a scalar random variable and= 0 is some arbitrarily constant, then
h(cx) = h(x) + log |c| (2.21)
Property 2.6. If f(-) is any given deterministic function, then
h(x+ f(y)ly) = h(x]y). (2.22)
Property 2.7. If x € RY is random vector and4 € RV*" is some arbitrarily matrix, then
h(Mx) = h(x) + log |det(M)| (2.23)

Property 2.8. (Chain rule for differential entropy)

N

h(Xl,Xz, ce ;XN) = Zh(xk |X1,X27 e 7Xk71)a (2.24)
k=1
N

h(Xl,Xg, ey XN |Z) = Zh(xk |X1,X27 e ,Xk_l,Z). (225)
k=1

h(x) = —h(x) (2.26)
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Fact 2.1 (From [7, Theorem 14]) If an ensemble of random variables having entrégyper degree
of freedom is passed through a filter with frequency respadngé“), then the output ensemble has

differential entropy
1 r 2
hQ = hl + %/ 10g ‘F(ejw)| dw. (227)

Definition 2.13. The differentiaentropy rateof a random proceséx(k)},-, is defined by

h({x(k)}) £ lim %h(x(l),X(Q), ...,x(0)) = lim h( o, (2.28)

{—o00 l—oo ¥

whenever the limit exists.

Fact 2.2. If {x(k)},— ___ is a stationary process, then

h({x(k)}) = h(x(k)|...,x(k —2),x(k — 1)) = h(x(k)| x*71) (2.29)

Fact 2.3. If {x(k)} is a Gaussian stationary process with PSQ(e’~), then

T

h({x(k)}) = % / log (2 e Sx(e’*)) dw (2.30)

Definition 2.14. Therelative entropy (or Kullback-Leibler distance)( f||¢) between two PDFg and
g is defined by

D(fllg) = /flog § (2.31)

2.3.2 Mutual Information

Definition 2.15. Themutual informatior! (x; y) between two random variables with joint POE (-, -)

is defined as

Sry(@,y)
I(x;y) /fxy T,y 1ogfx( oy )dzdy (2.32)

The mutual information (x;y) is a measure of the amount of information that any of the remdo

variables involved contains about the other. From Definita15 it is clear that

I(x;y) = h(x) = h(x]y) (2.33)
= h(y) = h(y|x) (2.34)
= h(X) + h(.Y) - h(Xa.Y)a (235)
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and that
I(x;y) = I(y;%). (2.36)

Other well known properties are the following:
Property 2.9. D(f|lg) > 0, with equality if and only iff = ¢g almost everywhere.
Property 2.10. I(x;y) > 0, with equality if and only ik andy are independent.
Property 2.11. For random variables;, y andz,

I(x;y|2) = hx|2) - h(x|y,2) (2.37)
provided the differential entropies on the right-hand sid€2.37) are bounded.

Definition 2.16. The mutual information per dimensionbetween two random vectossy € RY is

defined as

I(x;y) £ %I(X; y): (2.38)

Definition 2.17. Themutual information ratebetween two jointly stationary random proceséeg:) } - |
and{y(k)},-, is defined as

7 T .

T({x()} s {y(k)}) 2 lim —I(xiyh), (2:39)

provided the limit exists. A

Fact2.4. If {x(k)} and{z(k)} are independent Gaussian stationary processes then

T} (<08 + ) = 1 [ 1og (HELEHE) g, (2.40)

Definition 2.18. Random variables, y, z are said to form aMarkov chain in that order (denoted by
x — y — z) if the conditional distribution of depends only og and is conditionally independent f

Specificallyx, y, z form a Markov chairk — y — z if their joint PDF can be written as

Frya(@,y,2) = (@) fy 1< (o) f2) v (2]y), (2.41)

or, equivalently, if

fz\x.,y(z|x’y) = fz|y(z|y) (242)
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Property 2.12. Random variables, y , z form the Markov chaink — y — z if and only ifz andx are

conditionally independent given i.e., if and only if

fx,z|y($az|y) :fx|y($|y)fz|y(z|y) (243)
Property 2.13. The Markov chaix — y — zimpliesz — y — x.
Property 2.14. If z = f(x), wheref(-) is some deterministic function, then— y — .

Fact 2.5(Data Processing Inequality)f x — y — z, thenI(x;y) > I(x;z) andI(y;z) > I(x;2).

2.4 Scalar Memoryless Quantization

2.4.1 Uniform Scalar Quantization
A uniform scalar quantize@ having L levels and quantization interval is defined by the following
mapping:
= i — 2.44
Q(v) arg min =, (2.44)
where thequantization alphabéll is given by

U2 {uy=-22 -2 +kA k=1,2,....L}. (2.45)

If Lis odd, therd € U, and thenQ is amid-stepquantizer. Else, if. is even,Q is amid-risequantizer.

Thequantization errom is defined as
nZ Q) —v=w-u, (2.46)
where
w = Q(v). (2.47)

If the input to the scalar quantizer is a random variahléhen the quantization error is also a random
variable, denoted by. If the PDF ofv is smooth, and if_ is large, then
Zen ), (2.48)
Jll
see [130], and the quantization error has an approximatefgrm PDF [94], which yields

2_A2

Po (2.49)

g
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0 = n
|
v o v w w VA%_>W

Figure 2.1: a) Subtractively dithered uniform quantization ¢ is a dither signal and EC and

ED are, respectively, entropy encoder and entropy decoder. b) Equivalent model.
With the additional assumption that the PDFvdfias bounded support, the variance of the quantization
error can be well approximated, for large valued.pby
02 =272, (2.50)
see, e.g., [55], where
Ry = log,(L) (2.51)

is the operational bit-rate of the quantizer ifixed-ratequantization scenario, that is, if each valudljin
is encoded usingey, bits. The multiplying factor: in (2.50 depends on the PDF of

Thesignal-to-noise ratidSNR) associated with a scalar quantizer and its input isidéfas

2
N2 U_; (2.52)
O—H
Substituting 2.50 into (2.52, we can write
v =c 122 (2.53)
and
1 1
Ry = 5 log, (7) + ) log,(c) (2.54)

2.4.2 Subtractively Dithered Uniform Scalar Quantization

A subtractively dithered uniform scalar quantizZ&DUSQ) is obtained by adding an i.i.d. dither signal

{6(k)} ~ U[-%5, 2], statistically independent dfv(k)}, to the input of the quantizer, and then sub-

tracting{d(k)} from the output [131-133]. This is shown in F@1 The reconstructed outp{itv(k)}

at time instantk is given by
w(k) = Q(v(k) + (k) —o(k), VkeZ, (2.55)
and the resulting quantization error

n(k) =w(k) —v(k) =w(k)+ (k) — Q(v(k) + 6(k)), VkeZ, (2.56)
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is i.i.d., uniformly distributed ovef—2, 2], andindependent of the input proce$s(k)} [132, 134].

Theasymptotic memoryless operational rafethe SDUSQ is defined as
Ro = H(w(k)|5(k)). (2.57)

This quantity is independent éfsincew (k) andd(k) are jointly stationaryRo corresponds to the rate
(in bits/sample) achieved by a memoryless entropy cod@rgaoh consecutive non-overlapping blocks
of N quantized values, wheN — oo, supposing that the entropy coder assigns the word-leogtihé
(-th block,? € Z, as an integer-valued approximation@f:gg[’1 H(w(k)|o(k)).

It was shown in [126] that
H(w|§) = I(v;w). (2.58)
Also, from Lemma4.10in Section4.8.20f the current thesis,

I(v;w) < —logy(y + 1) + 0.254 [bits/sample] (2.59)

|~

where equality holds if and only if is Gaussian. Substitutin@ .69 into (2.58 and @.57),
Ro < % log, (v + 1) 4+ 0.254 [bits/sample] (2.60)

with equality if and only ifv is Gaussian.



Chapter 3

WCMSE-Optimal Filters for a Given
Quantizer SNR

It's not easy taking my problems one at a time when they refuget in line.
Ashleigh Brilliant, British Cartoonist.

There are no small problems. Problems that appear small
are large problems that are not understood.

Santiago Raibin y Cajal, Spanish neuroanatomist.

Divide and rule, a sound motto. Unite and lead, a better one.
Johann Wolfgang von Goethe, German poet, novelist andgapleer.

3.1 Introduction

In this chapter we derive the optimal performance and fraqueesponses of the filters of full-band
scalar quantization schemes, subject to a constraint ocBNifeof the scalar quantizer. These results are
an extension of earlier work by the author and colleaguesgntty published in [118].

The general architecture for full-band scalar quantizesichemes consists of a scalar quantizer and
a set of linear filters around it, as shown in F&§1L We call this architecture geedback quantizer
(FQ). Well known examples of FQs include-Modulators, DPCM converters [55] and Sigma-Delta
modulators [78]. The latter schemes have been very suetlgsgbplied in a number of areas, including
audio compression [46, 55], oversampled A/D conversion{Bf sub-band coding [61], digital image

half-toning [48, 76, 77], power conversion [135], and cohtiver networks [136].

43
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T T v
AR
Error frequency
weighting filter
Encoder

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FQ System

Figure 3.1: Feedback Quantization system and frequency weighting filter.

In this scheme@ may take the form of a non-uniform or a uniform scalar quanmt{z1], the latter
being either ditheret or un-dithered [85].

The filtersA(z) and B(z) in an FQ system allow one to exploit the predictability of theut signal
so as to reduce the variance{of(k) } .cz. When compared with simple PCM conversion, this flexibility
allows one to use a scalar quantizer with a smaller quardizatep. The error-feedback filtd?(z)
opens the possibility of spectrally shaping the effect cdirgjization errors on the output. In this way,
one can allocate more of the quantization noise in the frecgbands where it is less harmful from a
user’s point of view. Accordingly, it is convenient to useracuency weighted error criterion, via an
error frequency weighting filteP(z), and to focus on thfequency weighted errar.

For the sake of generality, we consider the possible use lifgec beforeQ. This device limits the

value of the quantizer input signal so that

v, if o] <s,
s, if [v] > s,

wheres > 0 is thesaturation thresholdf the clipper. This clipping technique, which is equivalen
the one proposed in [56], can be used to keefsom overloading, which is helpful in reducing limit-
cycle oscillations (idle tones) in an FQ with high order fidte On the other hand, if we chosédo be
sufficiently large, them’ = v, and the clipper has no effect on the system.

If the characteristics of and the spectral properties of the input signakre known, then the design
of an FQ converter that minimizes the variance amounts to choosing the filtery z), B(z) andF(z).

In this chapter, we will characterize the performance asddaiated filters of optimal feedback quan-
tizers, under different architectural limitations. (Sesc®n1.1.3. For this purpose, as in [79-83],
we model the scalar quantizer as a linear device that intesladditive white noise whose variance is

proportional to that of the signal being quantized. The mesults are:

1n this case, the block in Fig. 3.1 represents the scalar quantizer including the dither &gna
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1. We derive equations that relate the minimum achievaldguiency weighted WCMSE to the

signal-to-noise ratiqSNR) of Q, for any subset of the filterd(z), B(z) and F'(z) being given
and fixed. Each possible subset of filters being fixed givesois different optimization problem.
These optimization problems were listed in Tabl& (pagel8), for MSE as the distortion metric.
We solve these problems using the WCMSE as the distortionien@thich includes the MSE
problems as special cases. We derive equations that chiaradhe optimal filters for each case.
Within the scope of validity of the Linear Model, our resut@n be applied to quantizers hav-
ing any given number of quantization levels, and to almasit@ary input spectra and frequency

weighting criteria.

. We show that, within our model, the frequency weighted Mi$SEn optimal FQ where the SNR

of 9 is fixed, decreases exponentially with oversampling rati&rom this result it follows that,
if Q is an entropy coded subtractively dithered scalar quanitd sufficient quantization levels

to avoid overload (or clipping), then, for a fixed operatikdni&rate,
MSE = 0(2—1.746/\),

as\ — oo. We also derive an extension of this result for the case diraatively dithered scalar
guantization with a (finite) number of quantization levéiattis insufficient to avoid quantizer
overload. This covers situations in which the source sasple), have a PDF with unbounded

support, provided that the momerpl(g) £ E[x(i)"] can be bounded as

. 1 ;
P T s =

for some finite scalaf/. We note that this requirement is satisfied by most PDFs aftiged or
theoretical interest, and in particular, by uniform,