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Abstract

This thesis presents results on optimal coding and decodingof discrete-time stochastic signals, in the

sense of minimizing a distortion metric subject to a constraint on the bit-rate and on the signal transfer

function from source to reconstruction.

The first (preliminary) contribution of this thesis is the introduction of new distortion metric that

extends themean squared error(MSE) criterion. We give this extension the nameWeighted-Correlation

MSE(WCMSE), and use it as the distortion metric throughout the thesis. The WCMSE is aweightedsum

of two components of the MSE: the variance of the error component uncorrelated to the source, on the

one hand, and the remainder of the MSE, on the other. The WCMSEcan take account of signal transfer

function constraints by assigning a larger weight to deviations from a target signal transfer function than

to source-uncorrelated distortion.

Within this framework, the second contribution is the solution of a family of feedback quantizer

design problems for wide sense stationary sources using an additive noise model for quantization errors.

These associated problems consist of finding the frequency response of the filters deployed around a

scalar quantizer that minimize the WCMSE for a fixed quantizer signal-to-(granular)-noise ratio(SNR).

This general structure, which incorporates pre-, post-, and feedback filters, includes as special cases

well known source coding schemes such aspulse coded modulation(PCM), Differential Pulse-Coded

Modulation(DPCM), Sigma Delta (Σ∆) converters, and noise-shaping coders. The optimal frequency

response of each of the filters in this architecture is found for each possible subset of the remaining

filters being given and fixed. These results are then applied to oversampled feedback quantization. In

particular, it is shown that, within the linear model used, and for a fixed quantizer SNR, the MSE decays

exponentially with oversampling ratio, provided optimal filters are used at each oversampling ratio. If a

subtractively dithered quantizer is utilized, then the noise model is exact, and the SNR constraint can be

directly related to the bit-rate if entropy coding is used, regardless of the number of quantization levels.

On the other hand, in the case of fixed-rate quantization, theSNR is related to the number of quantization

levels, and hence to the bit-rate, when overload errors are negligible. It is shown that, for sources with
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unbounded support, the latter condition is violated for sufficiently large oversampling ratios. By deriving

an upper bound on the contribution of overload errors to the total WCMSE, a lower bound for the decay

rate of the WCMSE as a function of the oversampling ratio is found for fixed-rate quantization of sources

with finite or infinite support.

The third main contribution of the thesis is the introduction of the rate-distortion function(RDF)

when WCMSE is the distortion metric, denoted by WCMSE-RDF. We provide a complete characteriza-

tion for Gaussian sources. The resulting WCMSE-RDF yields,as special cases, Shannon’s RDF, as well

as the recently introducedRDF for source-uncorrelated distortions(RDF-SUD). For cases where only

source-uncorrelated distortion is allowed, the RDF-SUD isextended to include the possibility of linear-

time invariant feedback between reconstructed signal and coder input. It is also shown that feedback

quantization schemes can achieve a bit-rate only 0.254 bits/sample above this RDF by using the same

filters that minimize the reconstruction MSE for a quantizer-SNR constraint.

The fourth main contribution of this thesis is to provide a set of conditions under which knowledge

of a realization of the RDF can be used directly to solve encoder-decoder design optimization problems.

This result has direct implications in the design of subbandcoders with feedback, as well as in the design

of encoder-decoder pairs for applications such as networked control.

As the fifth main contribution of this thesis, the RDF-SUD is utilized to show that, for Gaussian sta-

tionary sources with memory and MSE distortion criterion, an upper bound on the information-theoretic

causal RDF can be obtained by means of an iterative numericalprocedure, at all rates. This bound is

tighter than0.5 bits/sample. Moreover, if there exists a realization of thecausal RDF in which the re-

construction error is jointly stationary with the source, then the bound obtained coincides with the causal

RDF. The iterative procedure proposed here to obtainRitc (D) also yields a characterization of the fil-

ters in a scalar feedback quantizer having an operational rate that exceeds the bound by less than0.254

bits/sample. This constitutes an upper bound on the optimalperformance theoretically attainable by any

causal source coder for stationary Gaussian sources under the MSE distortion criterion.



Contents

1 Introduction 7

1.1 Background and Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Distortion Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Signal Transfer Function Constraints. . . . . . . . . . . . . . . . . . . . . . . 10

1.1.3 Architectural Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.4 Quantization and Entropy Coding Constraints. . . . . . . . . . . . . . . . . . . 13

1.1.5 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Previous Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 MSE Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Brief Review of Source Coding Paradigms. . . . . . . . . . . . . . . . . . . . 16

1.2.3 Related Existing Results on Causal and Delay-Free Source Coding. . . . . . . . 23

1.3 Overview of the Main Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 A Two-Parameter Frequency-Weighted MSE. . . . . . . . . . . . . . . . . . . 24

1.3.2 WCMSE Optimal Frequency Responses for Scalar Feedback Quantizers. . . . . 26

1.3.3 The RDF for Gaussian Sources with WCMSE as Fidelity Criterion . . . . . . . 27

1.3.4 Using Realizations of the RDF to Design Optimal SourceCoders . . . . . . . . 27

1.3.5 Results on the Causal Quadratic Gaussian Rate-Distortion Function . . . . . . . 28

1.3.6 Summary of the Main Contributions. . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Associated Publications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Preliminaries 31

2.1 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Basic Information Theoretical Concepts and Results. . . . . . . . . . . . . . . . . . . . 35

2.3.1 Entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



4 CONTENTS

2.3.2 Mutual Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Scalar Memoryless Quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Uniform Scalar Quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 Subtractively Dithered Uniform Scalar Quantization. . . . . . . . . . . . . . . 41

3 WCMSE-Optimal Filters for a Given Quantizer SNR 43

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Analysis Model and Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Feedback Quantizer Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.3 Optimization Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.4 Analysis Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 F (z) andA(z) (orB(z)) Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 F (z) andA(z) Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 F (z) andB(z) Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 F (z) and the Signal Transfer Function Given. . . . . . . . . . . . . . . . . . . . . . . 56

3.5 F (z) Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 A(z) andB(z) Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 B(z) Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 H(z) (pre-filter) Given . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 No Constraints:The WCMSE Optimal Feedback Quantizer. . . . . . . . . . . . . . . . 74

3.9.1 Special Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9.2 The Importance of Taking Account of Fed Back Quantization Noise . . . . . . . 80

3.10 Comparative Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.10.1 Optimal Frequency Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.10.2 Optimal Signal Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.10.3 Optimal Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.11 Simulation Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.11.1 Simulation Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.11.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.12 Oversampled Feedback Quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.12.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.12.2 The Oversampled Case Without Clipping/Overload. . . . . . . . . . . . . . . . 93

3.12.3 The Oversampled Case With Clipping. . . . . . . . . . . . . . . . . . . . . . . 96



CONTENTS 5

3.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.14 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 The WCMSE-Rate-Distortion Function 107

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.1 The WCMSE is Not Linear in the PDF of Source and Reconstruction . . . . . . 108

4.2.2 The Reconstruction Error Must Be Jointly Gaussian with the Source. . . . . . . 110

4.3 WCMSE-RDF for Gaussian Scalar Sources. . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.1 Geometrical Interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3.2 Convexity ofRa,b(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 WCMSE RDF For Gaussian Vector Sources. . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.1 Preliminary Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4.2 Ra,b(D) for Gaussian Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 WCMSE RDF For Gaussian Stationary Processes. . . . . . . . . . . . . . . . . . . . . 130

4.5.1 Distortion Spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.5.2 Special Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.6 WCMSE-RDF For Vector Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.7 Image Processing Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.8 Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.8.1 Background on Dithered Lattice Quantization. . . . . . . . . . . . . . . . . . . 147

4.8.2 Achievability ofRa,b(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.9 R⊥(D) Within Feedback Loops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.9.1 The Directed Version ofR⊥(D) . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.9.2 The Gaussian Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.11 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5 Using Realizations of the RDF to Design Optimal Source Coders 165

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.2 Conditions for Scalar Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.2.1 All Three Degrees of Freedom are Necessary. . . . . . . . . . . . . . . . . . . 172

5.2.2 Entropy Coding with Memory is an Extra Degree of Freedom . . . . . . . . . . 172

5.3 Conditions for Vector Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



6 CONTENTS

5.4 Conditions for Vector Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6 Bounds on the Causal RDF for Gaussian Processes 193

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.2 Obtaining the Stationary Causal RDF. . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.3 Upper Bound on the Operational Causal RDF. . . . . . . . . . . . . . . . . . . . . . . 205

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7 Conclusions 209

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.2 Main Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.3 Directions for Future Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212



Chapter 1

Introduction

Design depends largely on constraints.

Charles Ormond Eames, Jr, United States Designer.

There exist but two classes of problems in politics: those
which solve themselves and those which have no solution.

Raḿon Barros Luco, former Chilean president (1910-1915).

My biggest problem is what to do about
all the things I can’t do anything about.

Ashleigh Brilliant, British Cartoonist.

1.1 Background and Motivation

Many engineering applications require the storage and transmission of signals so that small distortion

occurs whilst utilizing a limited number of bits. The achievement of this goal has been one of the

fundamental objectives in signal processing research since the beginnings of the “Digital Era” [1–5].

The mathematical characterization of the trade-off between fidelity and data-rate constitutes the

essence of what is known as Rate-Distortion Theory [6]. The foundations for this theory were laid

by Claude Shannon in [7, 8]. Shannon’srate-distortion function(RDF), denoted byR(D), specifies the

minimum bit-rateR required for a given amount of distortionD that can be achieved byanyconceivable

source coding system.R(D) has been characterized, to different degrees, for severalprobability density

functions(PDFs) and for several distortion metrics [6,9–11]. By far the best understood case of this rate-

distortion trade-off is that which occurs when the source isGaussian and mean squared error (MSE) is

used as the distortion metric. In this case, for a discrete-time Gaussian stationary random source{x(k)}

7



8 CHAPTER 1. INTRODUCTION

with power spectral density(PSD)Sx(e
jω), the minimum achievable rate for a given distortionD > 0

is given by the well knownreverse water-filling equations1 [6,9]

R(D) =
1

2π

∫

ω:Sx(ejω)>θ

1

2
log

(
Sx(e

jω)

θ

)
dω (1.1a)

D =
1

2π

π∫

−π

min
{
θ, Sx(e

jω)
}
dω, (1.1b)

whereθ > 0 is a scalar parameter commonly referred to as the “water level”. The relation between

rate, distortion and water level can be easily appreciated in the example illustrated in Fig.1.1-(a). In that

− z(k)

(b)(a)
π

ω

θ

SX

y(k)x(k)

Figure 1.1: (a): Graphical representation of the water-filling equations (1.1). The distortion

is represented by the colored area under the plot. (b): Backward test-channel realization of

R(D).

figure, the distortionD is given by the area under the water levelθ or the plot ofSx(e
jω), whichever is

lower. In turn, only the portion ofSx(ejω) standing above the water level contributes to the rate, as can

be seen from (1.1a).

Another equally important question in rate-distortion theory is finding arealizationfor the rate distor-

tion function for a source. A realization of a rate-distortion functionR(D) corresponds to a probability

assignment between sourcex and its reconstructed approximationy such that the distortion isD and the

mutual information2 betweenx andy equalsR(D). For a discrete-time Gaussian stationary source with

PSDSx(e
jω) and using MSE as the distortion metric,R(D) is realized if the optimal reconstruction error

{z(k)} , {y(k)} − {x(k)}

is a Gaussian stationary process independent of the output{y(k)}, with PSD

Sz(e
jω) = min

{
θ, Sx(e

jω)
}
. (1.2)

1These equations were first derived by Kolmogorov for continuous-time Gaussian sources in [12].
2The notion of mutual information is formally introduced in Section2.3.2of this thesis.
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From the above argument it can be seen that the realization ofR(D) can be represented by atest channel

such as the one shown in Fig.1.1-(b). Since the additive noise{z(k)} is assumed independent of any

other signalenteringthe channel, the arrows point to the left. (Recall that the error must be independent

of the output.) Such flow of signals, which may at first sight seem counterintuitive, is an indication of

the fact that Shannon’s rate-distortion function cannot berealized causally. This implies that, in practice,

infinite delay from source to reconstruction would be required to achieve3 R(D).

Part of the applicability of rate-distortion theory stems from the fact that knowledge of the RDF, for a

given source and distortion metric, can be used as a guideline to design rate-distortion efficientencoder-

decoder(ED) systems, see [13] and the references therein. Indeed, the water-filling equations (1.1)

naturally suggest practical coding paradigms such as sub-band coding and transform coding [13, 14].

Moreover, knowledge of the realization of an RDF can, in principle, be utilized as the key to solve

optimal source-coder design situations [15]. Unfortunately, this doesn’t seem to be the case for most

practical ED design problems. In fact, a number of limitations usually arise in practice that preclude the

use of the RDF and its realization to aid in the design of ED pairs. As a consequence, not only can the

performance of an ED system significantly depart fromR(D), but also a designer, if aiming for rate-

distortion efficiency, will have to solve an (often difficult) constrained optimization problem. A brief list

of these practical limitations includes:

1. the analytical intractability of meaningfuldistortion metrics;

2. signal transfer function constraints;

3. architectural limitations;

4. quantization and entropy coding constraints; and

5. delay.

Each of these limitations is briefly discussed below.

1.1.1 Distortion Metrics

It is often the case that the most meaningful distortion metrics for the application of interest make the

analytic derivation of the corresponding RDF a formidable,or even impossible, task4 [19,20]. This is the

case of, for example, elaborate distortion metrics based upon perception models of human hearing and

3Notice that, in this thesis,to achievemeans to construct an ED pair that attains an operational bitrateR(D) when the distortion

is D, which is more restrictive thanto realizea rate-distortion function.
4Except, in some cases, at asymptotically high rates, see, e.g., [16–18].
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vision [20–23]. The opposite situation occurs with the MSE distortion metric. MSE is highly amenable

to analytical manipulation, but fails to adequately describe perceived distortion in applications such as

image processing [23]. An example of this fact is illustrated in Fig. 1.2. In this figure, the perceived

degradation in image quality produced by linear distortion(low-pass filtering in images (b) and (e)) is

clearly more significant than that due to additive noise uncorrelated to the original picture (images (c)

and (f)). Nevertheless, the MSE in (b) is equal to the MSE in (c). The same applies to images (e) and (f).

(a) Original (b) MSE = 769 (c) MSE = 769

(d) Original (e) MSE = 36.6 (f) MSE = 36.6

Figure 1.2: Comparison between the perceived effect of parallel and uncorrelated distor-

tions. (a), (b): Original images; (b) and (e): Low-pass filtered versions (Gaussian blurring);

(c) and (f): Uniformly distributed white noise uncorrelated to the original image added.

1.1.2 Signal Transfer Function Constraints

A number of applications impose constraints on the transferfunction from source to the reconstructed

output. This situation arises, for example, when the outputof the decoder is added to the output of one or

more other decoders that generate correlated versions of the same source. Typical examples can be found
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in sub-band coders [24–28] and in parallel quantization schemes [29–31]. Although, in these cases, the

signal transfer functions of all ED pairs could, in principle, be optimized globally, there are situations in

which the design must be carried out in a modular fashion. This happens, for example, when the globally

optimal design is unknown, or when the other parallel encoder-decoder pairs have been pre-designed and

cannot be modified.

Another scenario in which the signal transfer function of anED pair is important is when the decoded

output is fed-back to the encoder input (together with othersignals) through an external feedback loop.

As an illustration, consider a simple networked control system, as depicted in Fig.1.3. In this scheme,

r̃

d

r

Decoder

Controller Plant

Encoder

Rate-Constrained Digital Link

Figure 1.3: A simple networked control system. r, d and r̃ represent reference, disturbance,

and plant output signals, respectively.

let us assume that the reference signalr and the disturbance signald arewide-sense stationary(w.s.s.)

processes, and that the controller, plant, encoder and decoder are modeled as LTI systems. Suppose that

the controller has been designed, in some optimal sense,without taking into accountthe effect of an

ED pair in the feedback path. This is indeed the case in many practical situations, either because the

feedback path was originally a transparent, noise-less analog link, or because the joint optimal design of

controller and encoder-decoder is an open problem [32]. In this situation, if an ED pair is inserted in the

loop, as shown in Fig.1.3, then its associated signal transfer function will affect the dynamic behaviour

of the entire closed loop system. This may severely alter dynamic properties such as rise times, settling

times, and overshoot. It can also have an impact on the disturbance rejection capabilities of the closed

loop control system. More importantly, the open-loop signal transfer function of the ED pair should not

have a negative impact on the stability of the closed loop system. This requirement may be particularly

restrictive for unstable plants. In this situation, it is often reasonable to design the ED pair so that it

exhibits a unit signal transfer function. In this case, the ED pair will not affect the dynamical properties

intended in the original closed-loop design.
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1.1.3 Architectural Limitations

All digital source coding systems are based upon some form ofquantization, usually in combination with

other blocks, such as filters. In this thesis we restrict attention to cases where all these other blocks are

linear. In addition, when the source is an infinite-length random process, we will consider, apart from the

quantizer, only linear blocks which are also time-invariant (LTI). Excluding non-linear processing from

our analysis leaves aside techniques such as those based on consistent estimates, see. e.g. [33–36], encod-

ing paradigms based on matching pursuit [36, 37], and situations in which all the processing around the

quantizer is linear but possibly time-varying [38–41]. It has been shown in [33–36] that non-linear tech-

niques provide improvements in the reconstruction accuracy at the cost of additional complexity, when

compared to linear methods. However, encoding schemes based upon linear pre-and post-processing of

signal samples around a quantizer are widely used in practice due to their relative computational simplic-

ity.

When all the processing stages around the quantizer are linear, only three degrees of freedom are

available, namely: (i) to act on the signal before the quantizer (linear pre-processing), (ii) to act on the

signal after the quantizer (linearpost-processing), and (iii) to re-inject the output signal (possibly linearly

processed) to the input of the quantizer (linear feedback). These three degrees of freedom are illustrated

in Fig. 1.4. This architecture includes, as special cases, scalar full-band source coding schemes such

processing
pre-

processing
post-

quantization

feedbackENCODER DECODER

Source

x y

Reconstruction

Figure 1.4: The three degrees of freedom in any scheme that combines quantization with

linear processing blocks: pre-processing, post-processing, and feedback.

assigma-delta(Σ∆) converters [42, 43],multi stage noise shaping(MASH) modulators [44, 45], noise

shaping quantizers [46–49], delayed-decision or “look-ahead” feedback quantizers [50–54] and DPCM

converters [55,56], as well as subband coders such as transform coders [57,58] and filter-banks [28,59–

61].

There exist design situations in which one or more of the above degrees of freedom is not avail-

able. For example, if an audio encoder is to be designed for standard compact-disc players, the signal

processing associated with play-back is fixed, and thus onlytwo degrees of freedom are available: pre-
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processing and feedback. As another example, consider an optical sensor with quantized, discrete-time

output. In such a device, the physical variable of interest will reach the input of the (internal) quantizer

through some transfer function (different from unity), given by the dynamic properties of the transducer

within the sensor. This transfer function, which can be seenas linear pre-processing, cannot be mod-

ified (unless, of course, internal transducer reconfiguration is viable). This leaves only two degrees of

freedom available for the design of encoder and decoder. In relation to any particular situation, we refer

to constraints on the degrees of freedom available to the designer of the ED system asarchitectural

limitations .

It is natural to expect that any architectural limitation will adversely affect the best achievable per-

formance of an ED system. This raises other questions such as: “How much will the best achievable

performance be affected if any of the three degrees of freedom is not available?” “What is the impor-

tance of feedback?”, “Is feedback always necessary for optimality”? More generally, this motivates the

search for the fundamental performance limitations associated with architectural limitations.

1.1.4 Quantization and Entropy Coding Constraints

Quantization is the process of mapping continuous amplitude numbers (or vectors) into a finite or count-

able set of values. Without the use of other processing, vector quantizers are superior in rate-distortion

efficiency, when compared to scalar quantizers [62]. Nevertheless, the computational complexity of

implementing vector quantization is usually avoided in practice in favor of (simpler) scalar quantizers.

The bit-rate associated with a stand-alone scalar quantizer is given by the number of quantization lev-

els of the latter. More precisely, if the number of quantization levels isL, then the binary representation

of each quantized output takes⌈log2(L)⌉ bits, where⌈·⌉ denotes rounding up to the nearest integer. Such

combination of quantization and binary-encoding is commonly referred to asfixed-rate quantization.

It is well known thatentropy codingcan reduce the average bit-rate (or the total number of bits)

required to transmit, or store, the output of a scalar quantizer [63]. Moreover, it has long been rec-

ognized that, for memoryless sources, entropy-coded uniform scalar quantization performs very close

to Shannon’s RDF at all rates [64, 65]. In entropy coded scalar quantization, each possible output that

the quantizer can generate is called asymbol. An entropy coder maps each of these symbols to (bi-

nary) words of different length. For this reason, this combination of quantization and binary-coding is

commonly known asvariable-rate quantization. If the entropy coding mapping is from one symbol to

one word (in a sequential fashion) then the word-length (typically in bits) of each word depends on the

probability of the corresponding symbol being generated,conditioned on all previous symbols already

generated by the quantizer. Such an entropy coder will be referred to asentropy coder with memory



14 CHAPTER 1. INTRODUCTION

(ECM).

The computational complexity of implementing ECM is often avoided by using entropy coders that

operatebased only upon the marginal probability distributionof each symbol. The latter corresponds

to memory-less entropy coding, since, in this case, past symbols do not participate in the encoding

of the current symbol. As expected, the excess bit-rate incurred by ignoring the past in memory-less

entropy coding is large if the probabilistic dependence between consecutive symbols is strong, and zero

if consecutive symbols are statistically independent, i.e., if the quantizer outputs a memory-less sequence.

By using either linear prediction, as in DPCM converters, ornarrow-band analysis filters, as in sub-band

coders, the memory of the output of the quantizer can be reduced. This can mitigate, and sometimes

eliminate, the performance loss of using memory-less entropy coding instead of entropy coding with

memory. However, in terms of the general architecture shownin Fig.1.4, this requires the use of adequate

pre-processing and/or feedback. It also requires the freedom to design a matched post-processing stage

(e.g., a “colouring” post-filter in the case of predictive quantization, or a synthesis filter bank, in the

case of sub-band coding). Thus, when using memory-less entropy coding, the non-availability of any of

the design degrees of freedom will have a more adverse effecton the rate-distortion performance of the

system, than if an entropy coder with memory could be used.

When encoding a band-limited continuous time source, thereexistsituations in which increasing the

sampling rate is preferable (or less expensive) than increasing the number of levels used for quantiza-

tion. This is the case in, for example, digital audio [66], [43, Section 1.1]. The practice of sampling

a continuous-time source above its Nyquist rate is known asoversampling. Notice that oversampling

can also be applied to a discrete-time band-limited signal,by creating interpolated samples between the

original ones. In both the continuous-time and discrete-time cases, the effect of oversampling is a shrink-

age of the support of the spectrum associated with the samples. Oversampling, which can be seen as

an increase in time resolution, makes it possible to compensate for poor amplitude resolution, i.e., for

coarse quantization. This was recognized early by Bennet in1948 [67]. However, in achieving this MSE

reduction, it is crucial to place appropriate filters aroundthe quantizer [45, 56]. Thus, in oversampled

quantization, the optimal use of the three degrees of freedom shown in Fig.1.4plays a fundamental role.

1.1.5 Delay

It is known that for Gaussian sources with MSE as the distortion metric, any realization of theR(D)

function requires infinite (in practice, very large) delay.In particular, the forward-channel realization of

R(D) would require the use of non-causal (non-realizable) filters (see, e.g., [6, Section 4.5]). This limits

the usability of the RDF (and its associated realizations) for the design of optimal ED pairs subject to
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delay constraints. Delay constraints are present, for example, in real-time speech communications and

networked control applications. In the latter case, a delaybetween the source and its reconstruction is

highly undesirable, since it severely affects the dynamic properties and the noise rejection capabilities of

the closed loop system. Indeed, too much delay can easily render the closed loop system unstable, with

catastrophic consequences [68,69].

The causal rate-distortion function has been characterized only for memoryless sources or in the limit

as the rate tends to infinity, see, e.g., [70] and the references therein. For sources with memory, and at

medium or low rates, little is known. The solution to the causal rate-distortion problem could be helpful

in the design of rate-distortion efficient, causal source coders and decoders.

In addition to the causality of the encoder-decoder pair, a delay constraint may also produce further

performance degradation, if the system is subject to additional limitations. For example, if the digital

communications link between encoder and decoder is of limited instantaneous capacity, then the use

of entropy coding (either ECM or MEC), with average bit-rateclose to that capacity, will induce time

varying delays. If these delays are not tolerated by the application, then fixed-rate quantization must

be used. By using non-uniform quantizers, such as the Max-Lloyd quantizer, the bit-rate of fixed-rate

quantization can be very close to that of a uniform quantizerwith entropy coding (which has variable-

rate), see, e.g., [71]. However, if only “off the shelf” uniform quantizers are available, then the fixed-rate

quantization constraint imposed by low delay requirementswill entail a performance loss additional to

that already inflicted by the need to use a causal ED pair.

In all of the above situations, the design of optimal encoders and decoders cannot benefit from knowl-

edge of the corresponding RDF and its realizations,unless the RDF has been derived taking account of

the constraints associated with the design problem. As a consequence of this, the search for optimal ED

pairs for constrained scenarios has to be undertaken, in some sense, “from scratch”.

This is, indeed, the central theme in this thesis: the designof optimal ED pairs under the above

limitations, by either: i) following a “bottom-up”, constrained optimization approach, or ii) finding,

when possible, the RDF of the underlying problem and then following a more expedite, “top-bottom”

approach.
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1.2 Previous Related Work

1.2.1 MSE Extensions

It is possible to distinguish two philosophies in the solutions that have been proposed in the existing

literature for narrowing the gap between sources and measures for which an RDF can be found and

those for which it cannot. The first approach is to approximate the application-meaningful (but non

tractable) distortion metric by a simplified version more suitable for analysis and optimization, as done,

e.g., in [72, 73]. The second approach is to extend RDF-“friendly” distortion metrics to better represent

the impact of reconstruction errors in a wider range of applications. For example, the extension of MSE

to a frequency-weighted MSE (FWMSE), for which the RDF for Gaussian sources has been derived [74],

has found greater acceptance than plain MSE in areas such as audio quantization [46,75] and image half-

toning [76, 77]. Nevertheless, frequency-weighted MSE still fails to adequately measure, for example,

the type of perceptual differences that were illustrated earlier in Fig. 1.2.

1.2.2 Brief Review of Source Coding Paradigms

For stochastic sources, the problem of optimal design of thelinear processing blocks in the architec-

ture shown in Fig.1.4 has been solved only for MSE, and under certain constraints and assumptions.

These results are reviewed below for two important source coding paradigms associated with the scheme

depicted in Fig.1.4.

Full-Band Coders:

For a w.s.s.scalar processsource with a singlescalar quantizer, the system in Fig.1.4 can always

be re configured to either of the structures depicted in Figs.1.5 and1.6. Both are typical schemes that

can be used to describe sigma-delta (Σ∆) converters [42], noise shaping quantizers [46] and DPCM

converters [55]. In these figures, the blocksP , A, H , B, andF arelinear time-invariant(LTI) filters,

Q
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x
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Error
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Figure 1.5: General feedback quantization system.
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Figure 1.6: General feedback quantization system, alternative configuration (equivalent to

the one in Fig. 1.5 if and only if H = A/(1 − F )).

andQ represents a scalar quantizer. The feedback filterF needs to be strictly causal (i.e., it must have a

delay of at least one sample) for the closed loop to be well defined (see, e.g., [78, Chap.4]). The blockP

is a frequency-weighting filter, accounting for the different perceptual impact that reconstruction errors

may have at each frequency.

From the viewpoint of the architectural limitations discussed in Section1.1.3, the system in Fig.1.6

differs from the one in Fig.1.5 in that the former does not require being able to measure the signal that

enters the quantizer. This is compatible with the architecture limitation in which the pre-processing is

given and fixed. By contrast, the configuration shown in Fig.1.5, in which one can both inject a signal

prior toQ and measure the result, implicitly allows one to arbitrarily modify the pre-processing.

The analysis of the associated feedback system is commonly simplified by modeling the quantization

error,

n , w− v,

as white and uncorrelated with the sourcex [55, 79–83]. Hereafter, we will refer to this simplification

as the Linear Model, to be formally defined later in Section3.2.2. It must be noted that this model is

actually exact if uniform quantization with dither (eithersubtractive [84] or non-subtractive [85]) is used.

It can also serve as a useful approximation in other cases [25,42,55,86].

In the Linear Model, the constraint on the bit-rate is usually expressed as a constraint on the SNR of

Q, i.e., the ratio between the variances ofv andn = w− v in Figs.1.5 and1.6, see, e.g. [55, 79–83].

This ratio is denoted by

γ ,
σ2

v

σ2
n

. (1.3)

Under these assumptions, the design of a rate-distortion efficient full-band coder can be posed as the

minimization of the frequency weighted MSE for a given and fixed value ofγ, over all filtersA, B,

F (of un-restricted order) satisfying the given architectural constraints. Table1.1 lists several possible

optimization problems that can be obtained assuming different combinations of filters as being given and
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fixed. We can see from Table1.1 that some, but not all cases, have been studied earlier. However, these

Table 1.1: Architecture-constrained optimization problems. All cases but Case 7 are asso-

ciated to the system in Fig. 1.5. Case 7 is associated to the configuration shown in Fig. 1.6.

γ denotes the SNR of Q.

Optimization Problem

Case Givenγ, Find the Existing Results Note

Sx(e
jω) and MSE Optimal (for MSE Only)

1 A, F B Solution is the standard Wiener filter. -

2 B, F A Solution is the standard Wiener filter -

3 F ,AB = W A andB CaseW = 1, F = 0 solved by Noll in [81]. *

4 F A andB CaseF = 0 solved by **

Tuqan and Vaidyanathan in [87].

5 A, B F Results unavailable. The caseA = B = 1

is a noise-shaping quantizer ***

6 B A andF Results unavailable -

7 H B andF Results unavailable -

8 - A,B andF Solved by **

Zamir, Kochman and Erez in [15].

* The optimal system has “half-whitening” pre-and post-filters

** For the caseγ ≫ 1
2π

∫ π
−π
∣∣F (ejω)

∣∣2dω, this problem was first solved in [81].

*** For the caseγ ≫ 1
2π

∫ π
−π
∣∣F (ejω)

∣∣2dω, this problem was first solved in [81]. The solution

was then re-derived in [88] under the same assumption.

cases consider the MSE criterion only. In this thesis, we will provide a solution to all the problems in

this table as well as extend all of the results to a distortioncriterion we propose (which receives here the

nameweighted correlationMSE).

The optimization problem in the last row of Table1.1 is of particular interest for this thesis. It is a

clear illustration of the fact that knowledge of a realization of the underlying RDF of a problem can serve

to solve the optimal design problem for an ED pair. This optimization problem had remained open for

decades. The following is a brief overview of its history:

To the best of the author’s knowledge, the first paper to look for the MSE optimal filtersA,B andF ,
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for a givenγ, was written by Kimme and Kuo [89] in 1963. In that paper, closed form expressions were

derived for optimal frequency responses of the filtersA andB as a function ofF . These expression were

exact only for the cases in whichMSE < minω Sx(e
jω). The optimal solution forF had to be found

iteratively over the space of all causal and stable filters. In 1969, Brainard and Candy [80] proposed the

design of the corresponding filters combining some of the results in [89] together with heuristic criteria

for optimal quantization of television signals. One year later, Noll [81] presented simple analytical

expressions for the optimal filters. These expressions wereobtained under the simplifying assumption of

negligible quantization fed back error. Noll showed that, under this assumption, the optimal filters must

necessarily whiten the input signal prior to quantization and, at the same time, yield quantization errors

whose PSD becomes white after the error weighting filter. In [82], Atal and Schroeder study the problem

of optimal filters for noise-shaping-DPCM converters, focusing on the encoding of speech signals. These

authors propose a refined method for the design of the prediction filters, matched to the characteristics of

human speech. However, the design of the filter that determines the noise-shaping characteristics of the

converter is based on heuristics. After a surprising gap of approximately twenty years without further

attempts to solve this problem analytically, an important new insight came with the work of Guleryuz and

Orchard in 2001 [90]. As in [89], the analysis in [90] yields analytical expressions for two of the three

optimal filters using a Lagrangian approach. Here too, one ofthe filters has to be found by numerical

iteration over the space of all admissible filters. However,unlike [89], these expressions are exact for all

distortion values, i.e., for all bit-rate regimes. More importantly, [90] seems to have been the first paper

to study the rate-distortion performance of DPCM at low bit-rates, suggesting that scalar quantization

with feedback is (nearly) optimal, not only at high rates (asrecognized in, e.g., [55, 59]), but at low bit

rates as well. A fully analytical solution to this optimization problem finally appeared in recent work by

Zamir, Kochman and Erez [15]. Of key importance is the fact that the solution in [15] wasnot derived

by solving a constrained optimization problem. Instead, the authors in [15] start fromknowledge of the

forward channel realization of Shannon’s Rate-Distortionfunction for Gaussian sources with memory.

Working from this, and following adeductivemethod based on mutual-information equalities, optimal

performance, using an entropy coded dithered quantizer, isshown to be0.254 bits per sample above

Shannon’sR(D), at all rates. In [15], the optimal filters are not explicitly characterized, but closed form

expressions can be obtained from other results in the paper after some additional work. This example

illustrates one of the key ideas to be developed in this thesis: To determine how and when the design of

optimal ED pairs can be solved directly from knowledge of a realization of the underlying rate-distortion

function.

It is also of practical importance to characterize the best attainable performance of the scalar feedback
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quantization system in Fig.1.5as a function of theoversampling ratio. As mentioned in Section1.1.4,

oversampling (i.e., sampling a band-limited continuous-time signal at a frequency above its Nyquist rate)

allows one to achieve a smaller MSE error for a given, fixed number of quantization levels. For instance,

the MSE of simple scalar quantization (without feedback) isknown to decrease asλ−1, whereλ is the

oversampling ratio, given by

λ ,
Sampling Frequency
Nyquist Frequency

,

see [67]. The latter result has recently been extended to general redundant expansions in [91]. In turn,

it has been shown in [56] that feedback scalar quantizers canattain an MSE that isO(λ−2(m+1)) as

λ → ∞, wherem is the order of the feedback filter. (See also recent work in [38–40, 92, 93]). From

a rate-distortion viewpoint, the inverse polynomial errordecay of this error estimate is “too slow” to

compensate for the increase in the overall bit-rate due to oversampling (which is proportional toλ). To

be more precise, let us consider a scalar quantizer withN = 2b quantization levels, whereb denotes the

quantization resolution in bits per sample. If the additional bit-rate caused by oversampling were to be

utilized instead to increaseN , the MSE would decay asO(2−2bλ), i.e., exponentially5.

A faster decay rate of the MSE of oversampled FQ withλ can be achieved by selecting a different

feedback filter (of possibly different order) for each oversampling ratio. An example of such a family

(of 1-bit Σ∆ converters) was given in [95]. Here, for uniformly bounded inputs, the continuous-time

reconstruction error can be uniformly bounded byλ−ρ log λ, whereρ > 0 is independent ofλ. This bound

guarantees an MSE that decays withλ asO(λ−2ρ log λ), which is faster than any inverse polynomial, but

still far from exponential. Based on this result, the familyof 1-bitΣ∆ converters reported in [96] achieve

an MSE that isO(2−0.14λ), i.e., exponentially decaying with increasingλ. Note that the results in [95]

and [96] were obtained using an exact, deterministic model for quantization. The author is not aware

of results on exponential error decay with oversampling ratio in feedback converters having a multi-bit

scalar quantizer or dealing with unbounded support sources.6

Subband Coders:

The case of the system in Fig.1.4 in which a w.s.s. source is decomposed into different bands and then

quantization is carried out using independent and parallelquantizers corresponds to the typical setting in

5Strictly speaking, this has been shown to hold only for signals whose PDFs have finite support. Indeed, it has been shown

that for several infinite support source PDFs, the MSE of uniform quantization decreases asymptotically withb not faster than

(ln 2)2/a b
2
a 2−2b, wherea > 0 is a constant independent ofb, see [94].

6There exist results showing that an exponential error decaywith increasing oversampling ratio can be achieved when the

quantization threshold crossinginstantsassociated with acontinuous timesource are encoded [97–99]. This falls outside of the

“first sample and then quantize” paradigm in which this thesis lies.
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filter-banks (FBs) andsub-band coding(SBC) [59]. A typical subband coder is shown in Fig.1.7. In

that figure, the pre-processing stage takes the form of a bankof M analysis filtersHi(z) (analysis filter

bank) followed by decimation (down-sampling)7. The latter process is represented by the blocks↓M ,

as shown in Fig.1.7. Each subband signalui is quantized using a separate scalar quantizer, labeledQ.

H̃0(z)

H̃1(z)

↓M Q ↑M

↓M Q ↑M

↓M Q ↑M

H0(z)

H1(z)

HM−1(z) H̃M−1(z)

x y
u0

u1

uM−1

w0

wM−1

w1

Figure 1.7: M -channel subband coder with analysis filters Hi(z) and synthesis filters

eHi(z).

The output of each quantizer is then up-sampledM -times (zero padding). This operation is represented

by the blocks↑M in Fig. 1.7. The output is then fed to the corresponding synthesis filterH̃i(z). The

down-sampling allows the inner section of the filter bank to operate at1/M times the sampling rate of

the input sequence{x(k)}. As a consequence, the total bit-rate is given by the averageof the bit-rates

associated with each quantizer. Another consequence of decimation is the introduction of adelay, of at

leastM samples, between the source and its reconstruction.

Traditionally, the focus in the subband coding literature has been onperfect reconstruction(PR) filter-

banks, i.e., on filter-banks where quantization is the only source of reconstruction error (see, e.g., [59,61,

100–105]). When quantization errors are uncorrelated withthe source, the PR condition is a special case

of the signal transfer function constraints discussed in Section 1.1.2. However, the motivation for PR

in the filter bank literature seems to originate from the search for aliasing-free analysis/synthesis banks

in the absence of quantization, rather than being a responseto practical situations where a unit signal

transfer function could be beneficial. (The papers [106,107] are an exception.) The study of filter banks

that do not satisfy the PR property began a few years later [86, 108–113]. Non-PR filter banks sacrifice

the PR property in exchange for achieving lower MSE. However, their superior performance can be

critically dependent on accurate knowledge of the statistics of the source [103].

For the case of thePerfect Reconstructionconstraint, it has been shown by Moulin, Anitescu and

Ramchandran that optimal FBs are, in general, biorthogonal[86, Corollary 3.2]. This fact had already

7 In the equivalent, but computationally more efficient, polyphase representation, the decimation (preceded by different delays)

takes place before a (modified) analysis filter bank, see, e.g., [59].
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been suggested by the results reported by Aase and Ramstad in[24]. The work in [86] also shows that an

optimal PR filter bank can always be constructed as a cascade of a paraunitaryprincipal component filter

bank(PCFB) followed by a set of pre- and post-filters placed around the quantizer in each subband. The

paper [86] additionally gives analytic expressions for theoptimal analysis/synthesis FBs, and provides

an iterative method to find the optimal bit-allocation.

For theNon-Perfect Reconstructioncase, expressions for the optimal synthesis FB, for a given anal-

ysis FB and a given bit-allocation, have been derived in [114] and [108]. The latter paper also proposes

an iterative method for joint design of analysis/synthesisFBs and associated bit-allocation. In a more

recent paper [113], Mihçak, Moulin, Anitescu and Ramchandran derive expressions for the optimal anal-

ysis/synthesis FBs for a given and fixed bit-allocation. They also propose an iterative algorithm for the

computation of globally optimal filters and bit-allocation. It is also shown in [113] that, as in the PR

case, an MSE optimal, non-PR FB can always be constructed as acascade of a paraunitary FB followed

by a set of pre- and post-filters placed around the quantizer in each subband. Nevertheless, in general,

for the non-PR case, the FB in the first stage of the cascade system, need not be a principal-component

filter bank [113, Remark 4].

Feedback, i.e., the third degree of freedom in the general architecture depicted in Fig.1.4, has received

relatively scarce attention in the subband coding literature. The use of feedback in subband coding first

appeared with the use of DPCM converters, instead of plain scalar quantizers (PCM converters), to

quantize each subband signal more efficiently (see, e.g., [115]). Feedback in subband coding has been

shown to be beneficial (in the sense of improving rate-distortion performance) in other situations as well.

For example, in [61], Bölcskei and Hlawatsch show that feedback is effective in reducing reconstruction

MSE in oversampled filter banks. Fisher proved in [116] that the rate of a standardquadrature mirror

filter bank (QMFB), without feedback, is strictly above the rate-distortion function, except for special

cases of the PSD of the source. Then Wong showed in [117] that the use of cross-band prediction (a

special case of feedback in the scheme of Fig.1.4) allows a QMFB to achieve asymptotically optimal

rate-distortion performance at high rates. In a recent paper by Makur and Arunkumar [28], the use of

feedback is also shown to improve rate-distortion efficiency in biorthogonal subband coders by reducing

(and in some cases eliminating) what is known asquantization noise amplification. Quantization noise

amplification is defined as the ratio between quantization noise variance in the reconstructed signal and

the average of the variances of quantization noises introduced in each subband. This ratio is unity for

paraunitary filter banks (where there is no quantization noise amplification), but is greater than unity in

all perfect reconstruction biorthogonal subband coders [28]. Nevertheless, to the best of the author’s

knowledge, the problem ofjointly designing optimal filters and bit allocation for subband coders with
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feedback has not been solved. Hence, the optimal achievableperformance of a subband coder with three

degrees of freedom remains an open problem, except in the limit as the rate, or the number of subbands,

tends to infinity.

1.2.3 Related Existing Results on Causal and Delay-Free Source Coding

It is known that full-band source coders, such as PCM, DPCM and Σ∆ converters, do not introduce delay

between source and reconstructed signal, as long as all the pre- and post-filters do not introduce delay, see

Fig. 1.5. However, it is not known how to design an optimal scalar feedback quantizer satisfying a finite-

(or zero-) delay constraint. As mentioned in Section1.2.2, the bit-rate of the predictive converters found

in [15], which use subtractive dither and entropy coding, isonly 0.254 bits per sample above Shannon’s

RDF, for Gaussian stationary sources. Unfortunately, the converters described in [15] require the use of a

non-causal pre- or post-filter. In practice, these would need to be approximated by filters which introduce

a (possibly) long delay. On the other hand, all the filters in the optimal perfect reconstruction feedback

quantizers obtained by the author (and colleagues) in [118]are causal. Therefore, these converters can

be considered the best zero-delay source coders for w.s.s. sources described to date. However, being

PR converters, it is clear that these ED pairs are still sub-optimal, within the class of zero-delay source

coders. This can be easily verified by noting that applying a causal Wiener filter [119], which violates the

PR constraint, to the reconstructed signal in a PR converter, is guaranteed to reduce distortion without

introducing delay.

In the subband coding(SBC) literature, causal (zero-delay8) transform coders were first proposed

in [120] by Habibi and Hershel, as an alternative to principal component transform coders (such as the

Karhunen-Lòeve Transform, KLT, see [121]). Unlike KLT coders, causal transform coders use only tri-

angular matrices for analysis and synthesis. The cost of achieving causality, in this case, is quantization

noise amplification. The latter arises from the fact that triangular matrices cannot be unitary, and thus are

not energy preserving (except for the identity matrix). Feeding the quantization error associated with one

transform coefficient to the next coefficientbeforeit is quantized, in a sequential fashion, reduces quan-

tization noise gain, improving rate-distortion performance. This technique can be seen as a special case

of feedback in the general architecture depicted in Fig.1.4. Using the Linear Model (see Section1.2.2),

it was shown by Phoong and Lin in [57] that careful design of the linear feedback component in a causal

transform coder can, at high rates, bring the theoretical quantization noise gain down to unity. In such

cases, the performance of causal transform coding equals that of KLT [57]. Notice that this is analogous

8The requirement of zero-delay is stronger than causality: asystem can be causal and yet introduce arbitrary delay. Nevertheless,

the term “causal transform coder” is commonly used to refer to zero-delay transform coders.
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to the results mentioned above regarding biorthogonal filter banks as reported in [28]. The extension of

causal transform coders to general subband coders is also discussed in [57]. The author is unaware of

any other paper analyzing the design of SBCs. It is also important to note that the linear model analysis

carried out in [57] and [28] assumes that fed-back quantization errors negligible variance. Thus, it is

accurate only at high rates.

From a rate-distortion theoretical perspective, there exist partial results on theoptimal performance

theoretically attainable(OPTA) with zero-delay codes and causal source coding. Ericson [122], and

Gaarder and Slepian [123, 124], have shown that, for i.i.d. sources, and under fixed-rate and zero-delay

constraints, optimal rate-distortion performance is achieved by PDF-optimized scalar quantization. Other

results have been obtained considering the less restrictive notion ofcausalityinstead of the requirement

of zero end-to-end delay. This notion receives the namecausal source coding, as introduced by Neuhoff

and Gilbert in [125]. Under this concept, an encoder-decoder pair is deemed causal if the reconstruction

of the current sample in the decoder is a function ofonly the current and past samples of the source.

Notice that this definition allows for arbitrary delays in the entropy coding of the quantized samples. It

is shown in [125] that for memoryless sources, the OPTA is achieved by time sharing between, at most,

two entropy-constrained optimal scalar quantizers. It waslater shown by Linder and Zamir that, for high

rates, the cost of requiring causality in source-coding is approximately0.254 bis/sample with respect to

Shannon’s RDF [70]. It is also known that, for any source and at any rate-regime, the mutual information

rate across anadditive white Gaussian noise(AWGN) channel is not more than 0.5 bits/sample above

the corresponding rate-distortion function [126]. By considering the use of subtractively-dithered scalar

quantizers and entropy coding, this yields an upper bound for the OPTA in causal source coding at0.754

bits/sample above the non-causal RDF. However, it is unknown whether causal source coders can out-

perform this bound.

1.3 Overview of the Main Contributions

The main contributions of this thesis are as follows:

1.3.1 A Two-Parameter Frequency-Weighted MSE

The first contribution of this work is an extension of the MSE criterion to better address perceptual

phenomena such as those shown in Fig.1.2, and to account forsignal transfer function constraintssuch

as those discussed in Section1.1.2. This measure consists of a weighted sum of the variance of the MSE

component which is uncorrelated to the source, on the one hand, and the remainder of the MSE, on the
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other. We give a formal definition to this distortion metric in the following.

For a random scalar sourcex reconstructed asy with reconstruction errorz , y− x, the mean

squared error,σ2
z = E

[
z2
]
, can always be decomposed into two terms, namely,source-uncorrelated

error

z−σz,x

σ2
x

x

andsource-parallel error

σz,x

σ2
x

x .

The variances of each of the above error components yields thesource-uncorrelated distortion

D⊥ , σ2
z −

σ2
z,x

σ2
x

(1.4a)

and thesource-parallel distortion

D‖ ,
σ2

z,x

σ2
x

, (1.4b)

such that

MSE = D⊥ +D‖ (1.5)

As an extension of the MSE, theWeighted Correlation Mean Squared Error(WCMSE) betweenx and

y is defined in this thesis as:

Da,b(x,y) , aD⊥ + bD‖, (1.6)

wherea, b are real positive coefficients. In the particular case of scalar random sources,D⊥ andD‖ are

as in (1.4). For a w.s.s. random process source{x(k)} with reconstruction{y(k)} = {x(k) + z(k)},

D⊥ ,
1

2π

∫ π

−π

[
Sz(e

jω)−
∣∣Sz x(e

jω)
∣∣2

Sx(ejω)

]
dω, (1.7)

D‖ ,
1

2π

∫ π

−π

∣∣Sz,x(e
jω)
∣∣2

Sx(ejω)
dω. (1.8)

whereSx andSz are thepower spectral densities(PSD) of{x(k)} and{z(k)}, respectively, andSz x(e
jω)

is the cross-spectral density between{z(k)} and{x(k)}. For a vector random sourcex ∈ RN having

covariance matrixKx, we have

D⊥ ,
1

N
tr {Kz} −

1

N
tr
{
Kz,xK−1

x KT
z,x

}
(1.9)

D‖ ,
1

N
tr
{
Kz,xK−1

x KT
z,x

}
, (1.10)
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wherez = y−x andKz,x is the cross-covariance matrix betweenz andx. Notice that settinga = b = 1

yields the standard MSE criterion.

Reconstruction errors produced by linear processing, suchas filtering, are part of the source-parallel

distortion term. These have no impact on the source-uncorrelated term. Thus, by choosingb > a, it is

possible to assign a larger cost to deviations of the signal transfer function of an ED pair from a target

transfer function. This allows WCMSE to take account of, forexample, the perceptually greater impact

of linear distortion in images such as those illustrated in Fig. 1.2, or signal transfer function constraints

such as those described in Section1.1.2. In particular, lettingb→∞ yields a distortion metric which is in

agreement with the situation where linear distortion is nottolerated. The design of source coder-decoder

pairs that minimize the bit-rate for such a distortion metric will yield optimal unity transfer function (i.e.,

perfect reconstruction) source coders9.

For the case of random processes and random vectors, it is straightforward to combine the WCMSE

with frequency weighting. To be more precise, if the frequency sensitivity to each distortion term is the

same, sayP (ejω), then the frequency-weighted WCMSE becomes

a
1

2π

∫ π

−π

∣∣P (ejω)
∣∣2
[
Sz(e

jω)− Sx,z(e
jω)

Sx(ejω)

]
dω + b

1

2π

π∫

−π

∣∣P (ejω)
∣∣2 Sx,z(e

jω)

Sx(ejω)
dω (1.11)

Obviously, frequency weighted WCMSE includes frequency weighted MSE as a special case. Fur-

thermore, provided appropriate values fora andb are chosen, frequency weighted WCMSE will be su-

perior to frequency weighted MSE in all applications where source-correlated distortion has a different

impact than linear distortion.

1.3.2 WCMSE Optimal Frequency Responses for

Scalar Feedback Quantizers

The second contribution of this work is the derivation of thefrequency response of the filters in a general

feedback scalar quantization system that minimize the frequency weighted WCMSE, for a given quan-

tizer SNR constraint, and for any choice of weightsa, b. This optimization problem is solved for various

combinations of filters being fixed and given as listed in Table 1.1. Since the WCMSE is novel to this

thesis, the solutions are new and include MSE-optimal filters as special cases. For example, for the last

problem in Table1.1, the results presented here includethe first optimization-basedderivation of the

optimal filters characterized by Zamir, Kochman and Erez in [15].

9With the choicea = 0, any optimal ED pair would yield no linear distortion, but the source-uncorrelated distortion would be

unbounded, which makes this extreme case of little practical interest.
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These results are then applied to design a family of scalar feedback quantizers whose WCMSE de-

cays exponentially with the oversampling ratio, for a fixed quantizer SNR, assuming overload errors are

negligible. If a subtractively dithered quantizer is utilized, then the noise model is exact, and the SNR

constraint can be directly related to the bit-rate if entropy coding is used, regardless of the number of

quantization levels. It is shown that in optimal feedback quantizers with entropy coded dithered quanti-

zation, the WCMSE decays with the oversampling ratio as2−1.75λ. In the case of fixed-rate quantization,

the SNR is related to the number of quantization levels, and hence to the bit-rate, when overload errors

are negligible. It is shown that, for sources with unboundedsupport, the latter condition is violated for

oversampling ratios sufficiently large. By deriving an upper bound on the contribution of overload errors

to the total WCMSE, a lower bound for the decay rate of the WCMSE as a function of the oversampling

ratio is found for fixed-rate quantization. To the best of theauthor’s knowledge, this is the first bound of

this type that takes into account overload errors. This makes the result applicable to the characterization

of the oversampling efficiency of feedback quantizers at encoding signals having unbounded support.

1.3.3 The Rate-Distortion Function for Gaussian Sources with

WCMSE as Distortion Measure

The third contribution of this thesis is the derivation of the rate-distortion function for Gaussian sources,

when WCMSE is used as the distortion metric. This RDF, denoted byRa,b(D), yields the well known

water filling equations whena = b = 1, and theRDF for source uncorrelated distortionsR⊥(D), which

was recently introduced by the author in [127], whena = 1 andb → ∞.10 In addition,R⊥(D) is

characterized for the case in which there exists LTI feedback between the output and the input of the ED

pair.

1.3.4 Using Realizations of the RDF to Design Optimal SourceCoders

It is shown in this thesis that, under the Linear Model, the WCMSE-optimal filters in feedback quantizers

having three degrees of freedom, subject to a quantizer SNR constraint, are also WCMSE-optimal when

the constraint is theend-to-end mutual information rateand the quantizer is substituted by an AWGN

channel. These results provide conditions under which the knowledge of a realization of the underlying

10 It may seem at first surprising that fixinga = 1 and lettingb → ∞ yields only source-uncorrelated distortion. This

apparent contradiction is clarified by noting that a large value of the weightb implies that, in order to minimizeDa,b for a

given rate, source-parallel distortion should be small, since it is more expensive than source-uncorrelated distortion. In the limit as

b → ∞, source-parallel distortion is infinitely expensive, and thus the minimization ofDa,b can only allow for source-uncorrelated

distortion.
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rate-distortion function can be used as a guideline to design optimal ED pairs. Necessary and sufficient

conditions for the equivalence between the quantizer-SNR-constrained optimization problem and the

Mutual-Information-Constrained optimization problem are found. This insight is then further extended

to other implementations (filter banks and transform coderswith feedback) of the general architecture

shown in Fig.1.4.

1.3.5 Results on the Causal Quadratic Gaussian Rate-Distortion Function

By usingR⊥(D) as a starting point, an iterative method is found for obtaining an upper bound on the

information-theoretic causal RDF for Gaussian stationarysources under the MSE distortion criterion.

It is shown that this method always converges, and that the bound, thus obtained, is tighter than0.5

bits/sample. Moreover, if there exists a realization of theinformation-theoretic causal RDF in which the

reconstruction error is jointly stationary with the source, then this bound coincides with the information-

theoretic causal RDF. In addition, the method yields the frequency response of the filters in acausal

scalar feedback quantizer which achieves a rate0.254 bits/sample above the latter bound. This consti-

tutes an upper bound on the optimal performance theoretically attainable by any causal source coder for

stationary Gaussian sources under the MSE distortion criterion.

1.3.6 Summary of the Main Contributions

Summarizing, the main contribution of this thesis are:

1. A novel extension of the MSE beyond frequency weighting, named WCMSE, is presented, to

incorporate signal transfer function constraints.

2. In Chapter3, feedback scalar quantization optimization problems witharchitectural constraints

are solved, using the Linear Model and the WCMSE as distortion metric and the quantizer SNR as

the bit-rate constraint. These results are applied to design a family of scalar feedback quantizers

whose WCMSE decays exponentially with the oversampling ratio, for a fixed quantizer SNR.

3. In Chapter4, the RDF for the WCMSE as the distortion metric is introducedand then completely

characterized for Gaussian sources. This RDF is then extended to cases where there exists LTI

feedback between reconstructed signal and source. The implications of this result for networked

control theory are also discussed.

4. In Chapter5, conditions and principles are found upon which end-to-end-mutual information and

quantizer SNR are equivalent constraints in the design of encoder-decoder pairs for minimum
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WCMSE. It is also shown how this result can help in the design of optimal subband coders.

5. In Chapter6, it is shown that, for stationary Gaussian sources with memory, an upper bound can

be obtained for thecausalWCMSE rate-distortion function by means of an iterative procedure.

This bound is equal to the causal RDF if the latter admits a realization in which the reconstruction

error is jointly stationary with the source.

1.4 Associated Publications
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2008.
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Chapter 2

Preliminaries

A good notation has a subtlety and suggestiveness
which at times make it seem almost like a live teach.

Attributed to Bertrand Russell, British mathematician andphilosopher.

My greatest concern was what to call it. I thought of calling it “information”, but the word
was overly used, so I decided to call it “uncertainty”. When Idiscussed it with John von

Neumann, he had a better idea. Von Neumann told me, “You should call it entropy, for two
reasons. In the first place your uncertainty function has been used in statistical mechanics

under that name, so it already has a name. In the second place,and more important, no one
really knows what entropy really is, so in a debate you will always have the advantage”.

Claude Shannon, United States electronic engineer and mathematician.

2.1 Notation

• N is the set of natural numbers.

• Z is the set of integer numbers.

• R is the set of real numbers.

• C is the set of complex numbers.

• x,X , lower and upper case italic letters are used for scalars.

• x lower case italic bold letters are used for vectors.

• X uppercase italic bold letters are used for matrices.

• {x(k)} is used for infinite length sequences.

31
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• xk is a short-hand notation for the semi-infinite length sequence{x(i)}ki=−∞, k ∈ Z.

• xkj is a short-hand notation for the finite length sequence{x(i)}ki=j , j, k ∈ Z.

• x∗ denotes the complex conjugate ofx.

• XT denotes the transpose of the matrixX .

• XH denotes the Hermitian (conjugate-transpose) of the matrixX, i.e.,XH = (XT )∗.

• X† denotes the Moore-Penrose pseudo-inverse ofX.

• tr {X} denotes the trace of a matrixX.

• |X| denotes the determinant of the matrixX.

• |X|HS denotes theweak matrix normof X, see Definition2.5below.

• ‖X‖ denotes thestrong matrix normof X, see Definition2.4below.

• Xℓ ∼ Y y denotes asymptotic equivalence between the sequences of matricesXℓ andY ℓ, see

Definition2.7below.

• λi(X) denotes thei-th eigenvalue of the matrixX, whereλi(X) ≥ λj{X} if i > j.

• diag{xk} is a diagonal square matrix (of appropriate dimension), with diagonal elementsxk.

• I is the identity matrix (of appropriate dimension).

• x,x,X non-italic fonts for random scalars, vectors and matrices.

• E [·] denotes the expectation operator.

• σ2
x = E [x x∗] (= E [x(k) x(k)∗]) is the variance of the zero-mean random variable x (or the zero-

mean w.s.s. process{x(k)}).

• σx,y = E [x y∗] is the covariance between the two zero-mean scalar random variablesx andy.

• Kx = E
[
xxH

]
is the covariance matrix of the random vectorx.

• Kz,x = E
[
zxH

]
denotes the cross-covariance matrix between the random vectorsz andx.

• Sx(e
jω) denotes thepower spectral density(PSD) of the wide sense stationary (w.s.s.) random

process{x(k)}.
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• Ωx(e
jω) =

√
Sx(ejω) is the square root of the PSD of the w.s.s. random process{x(k)}.

• L
2 andL

1 are sets of all complex-valued functions that are square integrable and absolutely inte-

grable over[−π, π], respectively.

• ℓ2 andℓ1 are sets of all complex-valued square integrable and absolutely integrable sequences,

respectively.

• 〈·, ·〉 denotes the inner product between its arguments In particular,

– If F (ejω), G(ejω) ∈ L
2, then〈F,G〉 = 1

2π

∫ π
−π F (ejω)G(ejω)∗dω.

– If f(·), g(·) ∈ L
2, then〈f, g〉 = 1

2π

∫ π
−π f(x)g∗(x)dx.

• ‖·‖ denotes the2-norm
√
〈·, ·〉 .

• ‖·‖∞ denotes the∞-norm. For a sequence{x(k)}, ‖·‖∞ corresponds to theℓ∞ norm‖x‖∞ =

maxk∈Z {|x(k)|}. For a function of a continuous variablef : [a, b]→ R, it corresponds to theL∞

norm‖f‖∞ = maxx∈[a,b] {f(x)}.

• Nf denotes the null-space of the function, mapping or transformationf , i.e., the set of arguments

whose image thoughf is zero. (With some abuse of notation, for a discrete-time Fourier transform

F (ejω) we writeNF , {ω ∈ [−π, π] : F (ejω) = 0}.)

2.2 Definitions

To simplify notation, we introduce the operator(·)∼1, defined as follows:

F (ejω)∼1 =




F (ejω)−1 , ∀ω /∈ NF

♮ , ∀ω ∈ NF ,
(2.1)

whereF : C→ R is any given function and♮ denotes any arbitrary and positive bounded value.

Definition 2.1 (Gateaux Differential [128]). LetX be a vector space andV a functional fromX to R.

TheGateaux differentialof V at f ∈ X with incrementh ∈ X is defined as

δV (f ;h) ,
d

dα
V (f + αh)

∣∣∣
α=0

, (2.2)

if the above derivative exists.
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Definition 2.2 (Similarly/Oppositely Functionally Related). We say that two functionsφ, ψ : [a, b] →
R aresimilarly functionally relatediff there exists a monotonically increasing functionG(·) such that

φ(x) = G(ψ(x)), for all x ∈ [a, b], and writeφ ↑↑ ψ. Similarly, if there exists a monotonically

decreasing functionG(·) such thatφ(x) = G(ψ(x)), for all x ∈ [a, b], we say thatφ andψ areoppositely

functionally related, and writeφ ↑↓ ψ. N

Definition 2.3 (Almost Constant Function). A functionf : [−π, π]→ R is said to be almost constant iff

π∫

−π

∣∣∣∣f(x)− 1

2π

∫ π

−π
f(ω)dω

∣∣∣∣ dx = 0. (2.3)

N

Definition 2.4 (Strong Matrix Norm [129]). Thestrong normof a matrixA, denoted by‖A‖, is defined

as

‖A‖ , max
z:zHz=1

[
zHAHAz

]1/2
= max

i
|λi(A)|2 (2.4)

N

Definition 2.5 (Weak Matrix Norm [129]). TheHilbert-Schmidtor weak normof a matrixA ∈ RN×N ,

denoted by|A|HS , is defined as

|A|HS ,

(
1

N
tr
{
AHA

})1/2

=

(
1

N

∑N

i=1
|λi(A)|2

)1/2

. (2.5)

N

Definition 2.6 (Wiener Class Toeplitz and Circulant Matrices [129]). For a given functionf ∈ L
1 :

[−π, π] → C, having absolutely summable inverse discrete-time Fourier Transform, the Toeplitz matrix

T ℓ(f) ∈ Rℓ×ℓ is defined element-wise as

[T ℓ(f)]m,n ,
1

2π

∫ π

−π
f(ω) e−j[n−m]ωdω, m, n = 0, 1, . . . , ℓ− 1. (2.6)

Similarly, the circulant matrixCℓ(f) ∈ Rℓ×ℓ is defined as the circulant matrix whose top row is given

by

[Cℓ(f)]1,m+1 ,
1

ℓ

ℓ−1∑

k=0

f(2πk/ℓ) ej2kmπ/ℓ, m = 0, 1, . . . , ℓ− 1. (2.7)

N
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Definition 2.7 (Asymptotically Equivalent Sequences of Matrices [129]). Two sequences ofℓ×ℓmatrices

{Aℓ}∞ℓ=1, {Bℓ}∞ℓ=1 are said to beasymptotically equivalent, denoted by

Aℓ ∼ Bℓ,

if

1. Aℓ andBℓ are uniformly bounded in the strong (and hence in weak) norm,i.e.,

‖Aℓ‖, ‖Bℓ‖ ≤M <∞, ℓ = 1, 2, . . . , (2.8)

and

2. Dℓ , Aℓ −Bℓ goes to zero in the weak norm asℓ→∞, i.e.,

lim
ℓ→∞

|Aℓ −Bℓ|HS = lim
ℓ→∞

|D|HS = 0 (2.9)

N

2.3 Basic Information Theoretical Concepts and Results

The following is a brief list of some of the information theoretical quantities and properties that will

be useful in the derivations carried out in this thesis. For proofs and insightful descriptions about these

concepts and results, the reader is referred to, e.g., [7,9,63].

2.3.1 Entropy

Definition 2.8 (Entropy of a Discrete Random Variable). The entropy of a discrete random variablex

taking values from a countable setX, with probability mass functionpx(·), is defined as

H(x) , −
∑

x∈X

px(x) log(px(x)) (2.10)

N

If the log(·) in (2.10) is taken to belog2(·), then the units of the entropy ofx arebits. If instead we

useln(·) in place oflog(·) in (2.10), then the units ofH(x) arenats. For any discrete random variablex,

H(x) ≥ 0. (2.11)
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Definition 2.9 (Entropy of an Ensemble of Discrete Random Variables). The entropy of an ensemble of

discrete random variables{x1, x2, . . . , xN}, each of them taking values from countable sets{Xi}Ni=1,

with joint probability mass functionpx1,...,xN (·), is defined as

H(x) , −
∑

x1∈X1

· · ·
∑

xN∈XN

px1,...,xN (x1, . . . , xN ) log(px1,...,xN (x1, . . . , xN )) (2.12)

N

Definition 2.10 (Conditional Entropy for Discrete Random Variables). If (x, y) ∼ px,y(·, ·), thecondi-

tional entropyH(x | y) is defined as

H(y | x) ,
∑

x∈X

px(x)H(y | x = x) (2.13)

=
∑

x∈X

px(x)
∑

y∈Y

py | x(y|x) log(py | x(y|x)) (2.14)

The notion of entropy can also be applied to continuous random variables:

Definition 2.11. Thedifferential entropyof a continuous random variablex with PDF fx(·) is defined

as

h(x) , −
∫

x∈X

fx(x) log(fx(x))dx, (2.15)

whereX is the support offx(·).

Unlike discrete entropy, differential entropy can be negative. Indeed,h(x) is differential in the sense

that it is relative to the entropy of a random variableu, distributed uniformly over a unit-length interval.

Such a random variable will have zero differential entropy.Thus, if the differential entropyx is 2 bits,

this means that its entropy is2 bits higher than that of the uniformly distributed random variableu.

It is easy to verify that the differential entropy of a Gaussian scalar random variablexG ∼ N (0, σ2
xG

)

is

h(xG) =
1

2
log2(2π e σ2

xG
) bits. (2.16)

Definition 2.12. The joint differential entropy of a continuous random vectorx whose elements have

joint PDF fx(·) is defined as

h(x) , −
∫

x∈X

fx(x) log(fx(x))dx, (2.17)

whereX is the support offx(·).
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For two continuous random vectorsx,y having joint PDFfx,y(·, ·), the conditional differential

entropy h(y|x) is defined as

h(y|x) , −
∫
fx,y(x,y) log fy|x(y|x)dydx (2.18)

It is often useful to decomposeh(y | x) as

h(y|x) = h(x,y) − h(x) (2.19)

which holds if and only if each of the differential entropiesin (2.19) is bounded.

Property 2.1. h(y) ≥ h(y|x), with equality if and only ifx andy are independent.

Property 2.2. h(y|x) ≥ h(y|x, z), with equality if and only ify andz are conditionally independent

givenx. (See also Definition2.18on page39.)

Property 2.3. h(y,x) ≤ h(x) + h(y), with equality if and only ifx andy are independent.

Property 2.4. If x is a scalar random variable andc is some arbitrarily constant,

h(x+c) = h(x). (2.20)

Property 2.5. If x is a scalar random variable andc 6= 0 is some arbitrarily constant, then

h(c x) = h(x) + log |c| (2.21)

Property 2.6. If f(·) is any given deterministic function, then

h(x + f(y)|y) = h(x|y). (2.22)

Property 2.7. If x ∈ RN is random vector andM ∈ RN×N is some arbitrarily matrix, then

h(Mx) = h(x) + log |det(M)| (2.23)

Property 2.8. (Chain rule for differential entropy)

h(x1, x2, . . . , xN ) =

N∑

k=1

h(xk | x1, x2, . . . , xk−1), (2.24)

h(x1, x2, . . . , xN | z) =

N∑

k=1

h(xk | x1, x2, . . . , xk−1, z). (2.25)

Thedifferential entropy per dimension of a random vectorx ∈ RN is denoted by

h̄(x) =
1

N
h(x) (2.26)
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Fact 2.1 (From [7, Theorem 14]). If an ensemble of random variables having entropyh1 per degree

of freedom is passed through a filter with frequency responseF (ejω), then the output ensemble has

differential entropy

h2 = h1 +
1

2π

π∫

−π

log
∣∣F (ejω)

∣∣2dω. (2.27)

Definition 2.13. The differentialentropy rateof a random process{x(k)}∞k=1 is defined by

h̄({x(k)}) , lim
ℓ→∞

1

ℓ
h(x(1), x(2), . . . , x(ℓ)) = lim

ℓ→∞

1

ℓ
h(xℓ1), (2.28)

whenever the limit exists.

Fact 2.2. If {x(k)}∞k=−∞ is a stationary process, then

h̄({x(k)}) = h(x(k)| . . . , x(k − 2), x(k − 1)) = h(x(k)| xk−1) (2.29)

Fact 2.3. If {x(k)} is a Gaussian stationary process with PSDSx(e
jω), then

h̄({x(k)}) =
1

4π

π∫

−π

log
(
2π e Sx(e

jω)
)
dω (2.30)

Definition 2.14. Therelative entropy (or Kullback-Leibler distance)D(f‖g) between two PDFsf and

g is defined by

D(f‖g) ,

∫
f log

f

g
(2.31)

2.3.2 Mutual Information

Definition 2.15. Themutual informationI(x; y) between two random variables with joint PDFfx,y(·, ·)
is defined as

I(x; y) ,

∫
fx,y(x, y) log

fx,y(x, y)

fx(x)fy(y)
dxdy (2.32)

The mutual informationI(x; y) is a measure of the amount of information that any of the random

variables involved contains about the other. From Definition (2.15) it is clear that

I(x; y) = h(x)− h(x | y) (2.33)

= h(y)− h(y | x) (2.34)

= h(x) + h(y)− h(x, y), (2.35)
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and that

I(x; y) = I(y; x). (2.36)

Other well known properties are the following:

Property 2.9. D(f‖g) ≥ 0, with equality if and only iff = g almost everywhere.

Property 2.10. I(x; y) ≥ 0, with equality if and only ifx andy are independent.

Property 2.11. For random variablesx, y andz,

I(x; y | z) = h(x | z)− h(x | y, z) (2.37)

provided the differential entropies on the right-hand sideof (2.37) are bounded.

Definition 2.16. Themutual information per dimensionbetween two random vectorsx,y ∈ RN is

defined as

Ī(x;y) ,
1

N
I(x;y). (2.38)

Definition 2.17. Themutual information ratebetween two jointly stationary random processes{x(k)}∞k=1

and{y(k)}∞k=1 is defined as

Ī({x(k)} ; {y(k)}) , lim
ℓ→∞

1

ℓ
I(xℓ1; y

ℓ
1), (2.39)

provided the limit exists. N

Fact 2.4. If {x(k)} and{z(k)} are independent Gaussian stationary processes then

Ī({x(k)} ; {x(k) + z(k)}) =
1

4π

π∫

−π

log

(
Sx(e

jω) + Sz(e
jω)

Sz(ejω)

)
dω (2.40)

Definition 2.18. Random variablesx, y, z are said to form aMarkov chain in that order (denoted by

x→ y→ z) if the conditional distribution ofz depends only ony and is conditionally independent ofx.

Specifically,x, y, z form a Markov chainx→ y→ z if their joint PDF can be written as

fx,y,z(x, y, z) = fx(x)fy | x(y|x)fz | y(z|y), (2.41)

or, equivalently, if

fz | x,y(z|x, y) = fz | y(z|y) (2.42)
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Property 2.12. Random variablesx, y , z form the Markov chainx → y → z if and only ifz andx are

conditionally independent giveny, i.e., if and only if

fx,z | y(x, z|y) = fx | y(x|y)fz | y(z|y). (2.43)

Property 2.13. The Markov chainx→ y→ z impliesz→ y→ x.

Property 2.14. If z = f(x), wheref(·) is some deterministic function, thenx→ y→ z.

Fact 2.5(Data Processing Inequality). If x→ y→ z, thenI(x; y) ≥ I(x; z) andI(y; z) ≥ I(x; z).

2.4 Scalar Memoryless Quantization

2.4.1 Uniform Scalar Quantization

A uniform scalar quantizerQ havingL levels and quantization interval∆ is defined by the following

mapping:

Q(v) = argmin
µ∈U

|µ− v| , (2.44)

where thequantization alphabetU is given by

U ,
{
uk = −L∆

2 − ∆
2 + k∆, k = 1, 2, . . . , L

}
. (2.45)

If L is odd, then0 ∈ U, and thenQ is amid-stepquantizer. Else, ifL is even,Q is amid-risequantizer.

Thequantization errorn is defined as

n , Q(v)− v = w − v, (2.46)

where

w , Q(v). (2.47)

If the input to the scalar quantizer is a random variablev, then the quantization error is also a random

variable, denoted byn. If the PDF ofv is smooth, and ifL is large, then

σv n

σ2
n

≃ 0, (2.48)

see [130], and the quantization error has an approximately uniform PDF [94], which yields

σ2
n =

∆2

12
. (2.49)
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Q EDEC wew

δ n

v

−δ

wev ewv

Figure 2.1: a) Subtractively dithered uniform quantization δ is a dither signal and EC and

ED are, respectively, entropy encoder and entropy decoder. b) Equivalent model.

With the additional assumption that the PDF ofv has bounded support, the variance of the quantization

error can be well approximated, for large values ofL, by

σ2
n = c2−2RLσ2

v, (2.50)

see, e.g., [55], where

RL , log2(L) (2.51)

is the operational bit-rate of the quantizer in afixed-ratequantization scenario, that is, if each value inU

is encoded usingRL bits. The multiplying factorc in (2.50) depends on the PDF ofv.

Thesignal-to-noise ratio(SNR) associated with a scalar quantizer and its input is defined as

γ ,
σ2

v

σ2
n

(2.52)

Substituting (2.50) into (2.52), we can write

γ = c−122RL , (2.53)

and

RL =
1

2
log2(γ) +

1

2
log2(c) (2.54)

2.4.2 Subtractively Dithered Uniform Scalar Quantization

A subtractively dithered uniform scalar quantizer(SDUSQ) is obtained by adding an i.i.d. dither signal

{δ(k)} ∼ U [−∆
2 ,

∆
2 ], statistically independent of{v(k)}, to the input of the quantizer, and then sub-

tracting{δ(k)} from the output [131–133]. This is shown in Fig.2.1. The reconstructed output{w(k)}
at time instantk is given by

w(k) = Q(v(k) + δ(k))− δ(k), ∀k ∈ Z, (2.55)

and the resulting quantization error

n(k) = w(k)− v(k) = w(k) + δ(k)−Q(v(k) + δ(k)), ∀k ∈ Z, (2.56)
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is i.i.d., uniformly distributed over[−∆
2 ,

∆
2 ], and independent of the input process{v(k)} [132, 134].

Theasymptotic memoryless operational rateof the SDUSQ is defined as

RQ , H(w̃(k)|δ(k)). (2.57)

This quantity is independent ofk sincew̃(k) andδ(k) are jointly stationary.RQ corresponds to the rate

(in bits/sample) achieved by a memoryless entropy coder acting on consecutive non-overlapping blocks

of N quantized values, whenN →∞, supposing that the entropy coder assigns the word-length for the

ℓ-th block,ℓ ∈ Z, as an integer-valued approximation of
∑ℓ+N−1

k=ℓ H(w̃(k)|δ(k)).
It was shown in [126] that

H(w̃|δ) = I(v; w). (2.58)

Also, from Lemma4.10in Section4.8.2of the current thesis,

I(v; w) ≤ 1

2
log2(γ + 1) + 0.254 [bits/sample], (2.59)

where equality holds if and only ifv is Gaussian. Substituting (2.59) into (2.58) and (2.57),

RQ ≤
1

2
log2(γ + 1) + 0.254 [bits/sample], (2.60)

with equality if and only ifv is Gaussian.



Chapter 3

WCMSE-Optimal Filters for a Given

Quantizer SNR

It’s not easy taking my problems one at a time when they refuseto get in line.

Ashleigh Brilliant, British Cartoonist.

There are no small problems. Problems that appear small
are large problems that are not understood.

Santiago Raḿon y Cajal, Spanish neuroanatomist.

Divide and rule, a sound motto. Unite and lead, a better one.

Johann Wolfgang von Goethe, German poet, novelist and philosopher.

3.1 Introduction

In this chapter we derive the optimal performance and frequency responses of the filters of full-band

scalar quantization schemes, subject to a constraint on theSNR of the scalar quantizer. These results are

an extension of earlier work by the author and colleagues, recently published in [118].

The general architecture for full-band scalar quantization schemes consists of a scalar quantizer and

a set of linear filters around it, as shown in Fig.3.1. We call this architecture afeedback quantizer

(FQ). Well known examples of FQs include∆-Modulators, DPCM converters [55] and Sigma-Delta

modulators [78]. The latter schemes have been very successfully applied in a number of areas, including

audio compression [46, 55], oversampled A/D conversion [56, 78], sub-band coding [61], digital image

half-toning [48,76,77], power conversion [135], and control over networks [136].

43
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B(z)
x̃

P (z)

Decoder
weighting filter
Error frequency

ǫx

Encoder F (z)
n

A(z)

y

vr v′ w

FQ System

Q

clipper

−s −s

s
s

Figure 3.1: Feedback Quantization system and frequency weighting filter.

In this scheme,Q may take the form of a non-uniform or a uniform scalar quantizer [71], the latter

being either dithered1 or un-dithered [85].

The filtersA(z) andB(z) in an FQ system allow one to exploit the predictability of theinput signal

so as to reduce the variance of{v(k)}k∈Z. When compared with simple PCM conversion, this flexibility

allows one to use a scalar quantizer with a smaller quantization step. The error-feedback filterF (z)

opens the possibility of spectrally shaping the effect of quantization errors on the output. In this way,

one can allocate more of the quantization noise in the frequency bands where it is less harmful from a

user’s point of view. Accordingly, it is convenient to use a frequency weighted error criterion, via an

error frequency weighting filterP (z), and to focus on thefrequency weighted errorǫ.

For the sake of generality, we consider the possible use of a clipper beforeQ. This device limits the

value of the quantizer input signalv′ so that

v′ =




v, if |v| ≤ s,
v
|v|s, if |v| > s,

wheres > 0 is thesaturation thresholdof the clipper. This clipping technique, which is equivalent to

the one proposed in [56], can be used to keepQ from overloading, which is helpful in reducing limit-

cycle oscillations (idle tones) in an FQ with high order filters. On the other hand, if we choses to be

sufficiently large, thenv′ = v, and the clipper has no effect on the system.

If the characteristics ofQ and the spectral properties of the input signalx are known, then the design

of an FQ converter that minimizes the variance ofǫ amounts to choosing the filtersA(z),B(z) andF (z).

In this chapter, we will characterize the performance and associated filters of optimal feedback quan-

tizers, under different architectural limitations. (See Section1.1.3). For this purpose, as in [79–83],

we model the scalar quantizer as a linear device that introduces additive white noise whose variance is

proportional to that of the signal being quantized. The mainresults are:

1In this case, the blockQ in Fig. 3.1represents the scalar quantizer including the dither signals.
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1. We derive equations that relate the minimum achievable frequency weighted WCMSE to the

signal-to-noise ratio(SNR) ofQ, for any subset of the filtersA(z), B(z) andF (z) being given

and fixed. Each possible subset of filters being fixed gives rise to a different optimization problem.

These optimization problems were listed in Table1.1(page18), for MSE as the distortion metric.

We solve these problems using the WCMSE as the distortion metric, which includes the MSE

problems as special cases. We derive equations that characterize the optimal filters for each case.

Within the scope of validity of the Linear Model, our resultscan be applied to quantizers hav-

ing any given number of quantization levels, and to almost arbitrary input spectra and frequency

weighting criteria.

2. We show that, within our model, the frequency weighted MSEin an optimal FQ where the SNR

of Q is fixed, decreases exponentially with oversampling ratioλ. From this result it follows that,

if Q is an entropy coded subtractively dithered scalar quantizer with sufficient quantization levels

to avoid overload (or clipping), then, for a fixed operational bit-rate,

MSE = O(2−1.746λ),

asλ → ∞. We also derive an extension of this result for the case of subtractively dithered scalar

quantization with a (finite) number of quantization levels that is insufficient to avoid quantizer

overload. This covers situations in which the source samples, x(i), have a PDF with unbounded

support, provided that the momentsµ(i)
n , E [x(i)n] can be bounded as

∣∣∣µ(i)
n

∣∣∣ ≤ 1

2
(n!)Hn−2

∣∣∣µ(i)
2

∣∣∣ , ∀n ≥ 2, ∀i ∈ Z+, (3.1)

for some finite scalarH . We note that this requirement is satisfied by most PDFs of practical or

theoretical interest, and in particular, by uniform, Gaussian and Laplacian PDFs. For these cases,

we show that ifQ is a subtractively dithered scalar quantizer withN levels, then the MSE can be

made to decay as

MSE = O(e−c0λ
1/3

),

whenλ→∞, wherec0 , 4N2/3. In order to achieve this asymptotic decay rate, it is necessary to

balance the variance of clipping and granular errors in the quantizer, for each oversampling ratio,

by carefully adjusting the loading factor (defined as half the input dynamic range of the quantizer

divided by the standard deviation of its zero-mean input signal) at whichQ operates. To the best of

the author’s knowledge, this is the only result in the literature combining overloading quantization

and oversampling. It also seems to be the first decay rate bound for the MSE of oversampled

quantization that holds for sources with infinite support.
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The contents of this chapter are organized as follows: In Section 3.2, we present our analysis model

for PRFQ converters. The different optimization problems arising from different architectural constraints

are solved in sections3.3–3.9. The case of oversampled FQ is analyzed in Section3.12. Section3.9.2

discusses the relationship to previous results and highlights the importance of taking account of fed back

quantization noise. Section3.11presents a simulation example, and Section3.13summarizes the main

results of the chapter.

3.2 Analysis Model and Assumptions

In this section we discuss some of the main aspects of feedback quantization. We also describe the

analysis model and the constraints to be considered.

3.2.1 Feedback Quantizer Equations

We begin by presenting the equations that describe the behaviour of the FQ shown in Fig.3.1.

Quantization and Clipping Errors

From Fig.3.1, the quantization errorn is given by

n(k) , w(k) − v′(k). (3.2)

Every practical scalar quantizer has an associated constant V > 0 such that, if|v′| > V , thenQ is said

to beoverloaded. When the quantizer is not overloaded, thenn(k) is said to consist of onlygranular

quantization error, namely̺(k), which can be bounded as|̺(k)| ≤ ̺max, ∀v′(k) ∈ R, for some0 <

̺max < 2V (see, e.g., [71]). For example, ifQ is a symmetric, uniform, non-dithered quantizer withN

levels and quantization interval∆, then one needsV ≤ N∆/2 in order to obtain̺ max = ∆
2 .

In general, we can write

n(k) = ̺(k) + τ(k), (3.3)

where

τ(k) , v(k)′ − v(k)′

|v(k)′| min{V, |v′(k)|}

is theoverloaderror. Clearly overload errors are bounded as|τ(k)| < |v′(k)| ≤ |v(k)|, but they cannot

be bounded by a constant unlessv′ is bounded.
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As outlined in the introduction, the clipper in Fig.3.1can be used to keepQ from overloading. For

simplicity, we will consider only two possibilities, namely, thats = V , or elses = ∞. The former

choice guarantees thatQ does not overload, since theclipping error, defined as

ϑ(k) , v′(k)− v(k), ∀k ∈ Z, (3.4)

takes place instead. More precisely, ifs =∞ we have that

ϑ(k) = 0, and (3.5)

τ(k) = v(k)− v(k)

|v(k)| min{V, |v(k)|}. (3.6)

If, instead,s = V , then the latter revert to

ϑ(k) = v(k)− v(k)

|v(k)| min{V, |v(k)|} and (3.7)

τ(k) = 0. (3.8)

A key point in using clipping is that, unlike overload errors, clipping errors are not fed back intoQ
throughF (z). This helps to avoid large limit-cycle oscillations arising from the overload ofQ, see [56].

Since such oscillations are not part of the analysis model wewill use, their occurrence could increase the

frequency weighted WCMSE significantly above the value predicted by the model.

Using the above definitions, and from Fig.3.1, we can write

w(k) = v(k) + n(k) + ϑ(k), (3.9)

which reveals thatw differs fromv by the sum of the quantization and clipping errors.

Transfer Functions

From Fig.3.1and (3.9) we have that

v = A(z)x− F (z)n, (3.10a)

x̃ = B(z)A(z)x+B(z)[1− F (z)]n+B(z)ϑ, (3.10b)

ǫ = P (z)B(z)[1− F (z)]n+ P (z)B(z)ϑ. (3.10c)

Notice that these equations are exact and require no assumptions on the signals involved. From (3.10b)

one can see thatA(z)B(z) corresponds to thesignal transfer function(STF), fromx to x̃, of the converter.

Similarly, the productB(z)[1−F (z)] is the transfer function for quantization errors. It is usually referred

to as thenoise transfer function(NTF) of the converter2. The term[1 − F (z)] will play a crucial role in

the derivation of the optimal filters in the subsequent sections.
2In noise-shaping andΣ∆ literature, whereB(z) is typically a unit gain, the term NTF is normally used for1 − F (z).
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Stability

We say that a PRFQ isBounded-Input-Bounded Output(BIBO) stable if and only if for any input se-

quencex satisfying‖x‖∞ ≤ xmax <∞ all the signals in the converter are bounded.

If s = V , or if Q has infinitely many quantization levels, then|n| ≤ ̺max, ∀k ∈ Z, and thus all the

other signals in the converter are bounded. On the other hand, if s = ∞, then, from Fig.3.1, v can be

written as

v =
A(z)

1− F (z)
x− F (z)

1− F (z)
w. (3.11)

If the quantizer has a finite number of quantization levels, thenw is bounded. IfF (z) is stable and

1 − F (z) is minimum-phase, then it follows from (3.11) thatv is bounded. This in turn guarantees that

n and all the other signals in the converter are bounded (see (3.2) and (3.10)). Summarizing, if all the

filters in Fig.3.1are stable, and if1 − F (z) has no zeros on or outside the unit circle, then the resulting

PRFQ is BIBO stable.

In addition, ifA(z) andF (z) are stable, then theℓ∞ norm of their impulse responses, namelyA∞

andF∞, are bounded. Thus, if there exists a boundedxmax > 0 such that|x(k)| ≤ xmax <∞, ∀k ∈ Z,

then a sufficient condition to ensureτ(k) = ϑ(k) = 0, ∀k ∈ Z, is thatV ≥ Vmin <∞, where

Vmin , A∞xmax + F∞̺max. (3.12)

Thus, for a uniform quantizer with quantization interval∆, it suffices to haveVmin/∆ or more quanti-

zation levels in order to avoid clipping or overload errors.The latter condition provides a “worst-case”

stability criterion, which has been considered, e.g., in [96,137,138].

3.2.2 Assumptions

The assumptions associated with our FQ model are described next.

Input Spectrum and Frequency Weighting

The error weighting filterP (z) in Fig. 3.1 models the impact that reconstruction errors have at each

frequency. This “performance assessment” filter is application dependent, and is assumed to be stable and

given. The input signal{x(k)}k∈Z is a zero-mean w.s.s. stochastic process3 with known PSDSx(ω) =
∣∣Ωx(e

jω)
∣∣2 and finite power, i.e.,‖Ωx‖2 < ∞. In order to simplify our subsequent analysis, we shall

further restrictΩx andP (z) to satisfy the following:

3 This excludes, for example, non-zero mean random signals, sinusoids, or constant inputs from the analysis.
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Assumption 3.1. The product|ΩxP | is a piece-wise differentiable function having, at most, a finite

number of discontinuities and satisfying
∣∣Ωx(e

jω)P (ejω)
∣∣ < ∞, ∀ω ∈ [−π, π]. In addition,|ΩxP | is

such that one4 of the following conditions holds:

i) There exists a constantgmin > 0 such that
∣∣Ωx(e

jω)P (ejω)
∣∣ > gmin, for all ω ∈ [−π, π], or

ii) ∃ω ∈ [−π, π] such that
∣∣Ωx(e

jω)P (ejω)
∣∣ = 0. Furthermore, if{Γi} denotes the set of non-

contiguous and non-overlapping intervals in[−π, π] such that
∣∣Ωx(e

jω)P (ejω)
∣∣ = 0 ⇔ ω ∈

⋃
i Γi, then, for everyi, ∃ζi ∈ Γi such that

∣∣Ωx(e
jω)P (ejω)

∣∣ isO(ω − ζi) asω → ζi. N

We note that the above is a rather weak constraint, since conditions i) and ii) include almost any

product|ΩxP | of practical or theoretical interest. In particular, condition i) covers all the cases where the

productΩx(z)P (z) has no zeros on the unit circle. In turn, condition ii) is satisfied ifPΩx is zero over

any interval on[−π, π] having non-zero measure, or ifΩx(z)P (z) is rational and has zeros on the unit

circle.

The Quantizer

We shall focus our analysis on the effect that granular quantization errors have on thefrequency-weighted

WCMSE, (FW-WCMSE). For their effect to closely represent the actual FW-WCMSE, we need to as-

sume the following:

Assumption 3.2. The variances of overload and clipping errors are negligible, i.e.,

σ2
τ ≪ σ2

n, if s =∞ , or (3.13a)

σ2
ϑ ≪ σ2

n, if s = V. (3.13b)

N

In addition, and as stated in the introduction, we will adoptan additive white noise model forn. This

model is widely used for the analysis and design of data converters (see, e.g., [43, 46, 55, 56, 61, 78–83,

87,90,92]). It is usually described as follows:

Assumption 3.3. The sequence of quantization noise{n(k)}k∈Z is a zero-mean w.s.s. random process,

uncorrelated with the input of the PRFQ, and having constantPSD

Sn(ω) = σ2
n, ∀ω ∈ [−π, π],

whereσ2
n is the variance of{n(k)}k∈Z. N

4Notice that conditions i) and ii) cannot be met simultaneously.
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The above additive white noise model, although not exact, is, in general, a good approximation when

a signal with a smoothprobability density function(PDF) is quantized with many levels and negligible

overload (in the sense of Assumption3.2), see, e.g., [78]. The model can be made exact,even for few

quantization levels, by utilizing a uniform scalar quantizer with either subtractive or non-subtractive

dither5, provided quantizer overload does not occur, see [85]. As discussed before, one way to achieve

this is to use a quantizer with a sufficiently large number of quantization levels, so as to satisfy (3.12). In

this case, if the quantization interval is∆ and the dither sequenceδ whitensn, makesn uncorrelated tox

whenQ is not overloaded, and is bounded as|δ(k)| ≤ δmax, ∀k ∈ Z, then any number of levels greater

than or equal to(Vmin + 2δmax)/∆ will make Assumption3.3 hold exactly. If a smaller number of

quantization levels are employed so thatV < Vmin, then the use of dither with the same characteristics

as before, together with clipping (i.e., settings = V ), will also maken satisfy Assumption3.3exactly.

Assumption3.3allows one to write the variance of{v(k)}k∈Z as

σ2
v = ‖AΩx‖2 + σ2

n‖F‖2, (3.14)

see Fig.3.1. This equation describes the effect ofσ2
n onσ2

v through the feedback path. However, if the

scalar quantizer has a finite and fixed number of quantizationlevels, then another link between these two

variances needs to be considered. In order to model this relationship, we will use the fixed signal-to-noise

ratio model employed in, e.g., [79–82,87]:

Assumption 3.4. For a fixed number of quantization levels, the variance of quantization errors is pro-

portional to the variance of the signal being quantized, i.e.,

γ ,
σ2
v

σ2
n

. (3.15)

is fixed. N

If no clipping is used (i.e., ifs =∞), thenγ corresponds exactly to the SNR ofQ. If s = V , thenγ

is a good a approximation to the SNR ofQ when (3.13b) in Assumption3.2holds.

In our model,γ is assumed fixed and given. Strictly speaking, as already mentioned in Section2.4, γ

depends on the PDF of{v(k)}k∈Z, on the number of quantization levels ofQ, and on how quantization

thresholds and levels are distributed along the dynamic range ofQ. In practice, for a given number

of quantization levels,γ should be chosen such that the dynamic range ofQ is used efficiently, whilst

ensuring a low probability of quantizer overload or clipping. For example, for the often cited uniform

quantizer withN levels and loading factor6 equal to4 we obtainγ = 3
16N

2 (assuming that{n(k)}k∈Z

5Here and in the sequel we assume the dither is such thatn is white and uncorrelated withx whenQ is not overloaded.
6The loading factor corresponds to the ratio between half thedynamic range ofQ and the standard deviation of its input.
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has a uniform PDF and negligible overload errors). We note that, for largeN , and provided the signal

being quantized has bounded support, a quadratic relationship betweenN andγ holds for most types

of scalar quantizers (see, e.g., [71, 130]). This is indeed the well known rule of “6 [dB] reduction of

quantization noise variance per additional bit of quantizer resolution” [55,71].

In the sequel, we refer to the model of quantization errors determined by Assumptions3.2, 3.3and3.4

as theLinear Model . Summarizing, the Linear Model is exact if the FQ uses a dithered quantizer having

enough quantization levels to avoid overload. If only an insufficient number of quantization levels is

available, but dither is used jointly with clipping, then the model is exact for predicting the effects of

granular quantization errors, and is a good approximation for predicting the total frequency weighted

WCMSE if Assumption3.2 also holds. If the scalar quantizer is un-dithered, has a small quantization

interval (relative toσv′ ) and enough quantization levels to avoid overload, then theLinear Model can be

expected to yield a good approximation to the total frequency weighted WCMSE. Perhaps surprisingly,

the Linear Model turns out to predict with remarkable accuracy the WCMSE of an optimal PRFQ when

few quantization levels and clipping are used with a loadingfactor big enough to satisfy Assumption3.2,

even without dither, and even for a 1-bit quantizer. This is evident in the simulation results presented

later in Section3.11.

3.2.3 Optimization Constraints

The filtersA(z),B(z) andF (z) in Fig.3.1are design choices. We shall restrict the search for the optimal

filters to those satisfying the following constraint:

Constraint 3.1.

1. A(z) andB(z) are stable.

2. F (z) is stable and strictly causal (i.e.,limz→∞ F (z) = 0). N

As discussed in Section3.2.1, the stability constraints onA(z), B(z) andF (z) are a necessary con-

dition for the converter to be BIBO stable. The additional requirement onF (z), namely strict causality,

is needed for the feedback loop in Fig.3.1 to be well defined (see, e.g., [78, Chap.4]). Notice that we

will not, a priori, require1 − F (z) to have zeros only inside the open unit disk. Instead, we willshow

that the latter property arises naturally from the solutionof the design optimization problem.

An additional constraint onF (z) arises from the value ofγ, as explained next. The ratio between the

variances ofv andn imposed by the feedbackcan be obtained by dividing (3.14) by σ2
n, yielding

σ2
v

σ2
n

=
‖AΩx‖2
σ2
n

+ ‖F‖2. (3.16)
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F (z)

A(z) B(z) H(z)

F (z)

L(z)

P (z) P (z)

σ2
v = γσ2

n

σ2
w = Kσ2

n

σ2
v = γσ2

n

σ2
w = Kσ2

n

v(k) w(k)

n(k)

n(k)

v(k) w(k)
x(k)

ǫ(k)ǫ(k)

x̃(k) x̃(k)x(k)
x(k)

x(k) + n(n)

n(k)

(a) (b)

Figure 3.2: Equivalent analysis models

One can see from the above that if‖F‖2 > γ, thenanypre-filter or scaling of the quantization intervals

of Q will yield σ2
v > γσ2

n, thus making large overload (or clipping) inevitable. Thiswould increase

overall distortion, and if no clipping is used, may lead to large limit-cycle oscillations. We thus conclude

that the use of feedback imposes the following constraint:

Constraint 3.2.

‖F‖2 < γ.

N

3.2.4 Analysis Model

Under the Linear Model originating from assumptions3.2, 3.3and3.4, the feedback quantizer of Fig.3.1

can be analyzed using the system shown in Fig.3.2-(a). In this figure,{n(k)} is a white w.s.s. process

uncorrelated with{x(k)}, and whose variance,σ2
n, obeys the SNR assumption (3.15). The variance of

{n(k)} can be found by substituting (3.15) into (3.16). This gives

σ2
n =

‖AΩx‖2
γ − ‖F‖2 . (3.17)

SinceF (z) is strictly causal, it satisfies

1

2π

∫ π

−π
F (ejω)dω = 0. (3.18)

Thus, we have that

‖F‖2 = ‖1− F‖2 − 1. (3.19)

Substitution of (3.19) into (3.17) yields

σ2
n =

‖ΩxA‖2
γ + 1− ‖1− F‖2 (3.20)
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Since, in the Linear Model, quantization errors are uncorrelated with the source, the frequency-weighted

WCMSE (see (1.11) on page26) is given by

Da,b(x, y) = aσ2
n‖PB(1− F )‖2 + b‖(AB − 1)ΩxP‖2 (3.21a)

= a
‖ΩxA‖2‖PB(1− F )‖2
γ + 1− ‖1− F‖2 + b‖(AB − 1)ΩxP‖2 (3.21b)

Upon defining

f(ejω) ,
∣∣1− F (ejω)

∣∣ , ∀ω ∈ [−π, π] (3.22a)

K , γ + 1 (3.22b)

we can re-write (3.21b) more compactly as

Da,b(x, y) = a
‖ΩxA‖2‖PBf‖2

K − ‖f‖2 + b‖(AB − 1)ΩxP‖2 (3.23)

In the subsequent analysis, it will also be useful to consider the equivalent structure shown in Fig.3.2-

(b). This scheme is equivalent to the one depicted in Fig.3.2-(a) if and only if

H(z) =
A(z)

1− F (z)
, (3.24a)

L(z) = [1− F (z)]B(z). (3.24b)

The equivalent expression for the frequency weighted WCMSEfor the system in Fig.3.2-(b) can be

readily obtained upon substituting (3.24) into (3.23), yielding:

Da,b(x, y) = a
‖PL‖2‖ΩxHf‖2

K − ‖f‖2 + b‖(HL− 1)ΩxP‖2 (3.25)

Comparison of (3.25) with (3.23) reveals the duality between the two schemes shown in Fig.3.2.

In sections3.3 to 3.9, we characterize the frequency response of the filters that minimizeDa,b(x, y)

subject to the constraint thatγ is fixed, and subject to constraints3.1 and3.2. We consider different

scenarios of architectural limitations, as described in Section 1.1.3. In each scenario, a different subset

of the filters of the system in Fig.3.2-(a) (or of the system in Fig.3.2-(b)) is considered to be given and

fixed. Thus, each scenario generates a different optimization problem. We begin in Section3.3with the

most restrictive scenarios, in which only one degree of freedom is available. We finish in Section3.9by

solving the problem in which the three filters that minimize the FWCMSE have to be found, i.e. where

there are are no architectural limitations.
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3.3 F (z) and A(z) (or B(z)) Given

3.3.1 F (z) and A(z) Given

If A(z) andF (z) are given and fixed, minimization of the frequency weighted WCMSE reduces to the

following:

Optimization Problem 3.1. For a givenK > 0, frequency responseA(z) and the frequency response

magnitudes
∣∣Ωx(e

jω)
∣∣,
∣∣P (ejω)

∣∣, f(ejω), find the filterB(z) that minimizes

Da,b(x, y) = a
‖ΩxA‖2‖PBf‖2

K − ‖f‖2 + b‖(AB − 1)ΩxP‖2. (3.26)

N

The answer to this problem is given in the following:

Theorem 3.1. The solution to Optimization Problem3.1satisfies

B(ejω) =
b
∣∣Ωx(e

jω)
∣∣2A(ejω)∗

aσ2
nf(ejω)2 + b |Ωx(ejω)A(ejω)|2

, a.e. on[−π, π]�NP , (3.27)

whereσ2
n is given by(3.20). The frequency response of the solution,B(ejω), can take any arbitrary

(bounded) value for allω ∈ NP . The minimumDa,b, achieved withB(z) as in(3.27), is

min
B(z)

Da,b(x, y) = ab
1

2π

π∫

−π

∣∣Ωx(e
jω)P (ejω)

∣∣2 f(ejω)2

af(ejω)2 + bK−‖f‖2

‖ΩxA‖2 |Ωx(ejω)A(ejω)|2
dω (3.28)

N

Proof. Define

W (z) , A(z)B(z). (3.29)

Noting that the optimalB(ejω) must clearly be bounded a.e. on[−π, π], we can write

B(ejω) = A(ejω)∼1W (ejω) (3.30)

Substitution into (3.21a) yields

Da,b(x, y) = aσ2
n‖PfA∼1W‖2 + b‖(W − 1)ΩxP‖2

Applying Lemma3.16(page104) to this equation, the transfer functionW (z) that minimizesDa,b(x, y)

is found to satisfy

W (ejω) =
bΩx(e

jω)2
∣∣P (ejω)

∣∣2

aσ2
n |P (ejω)|2 f(ejω)2

(
|A(ejω)|∼1

)2

+ bΩx(ejω)2 |P (ejω)|2
(3.31)

=
bΩx(e

jω)2
∣∣A(ejω)

∣∣2

aσ2
nf(ejω)2 + bΩx(ejω)2 |A(ejω)|2

, a.e. on[−π, π]. (3.32)
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Notice that (3.32) follows by multiplying both sides in (3.31) by
∣∣A(ejω)

∣∣2
(∣∣A(ejω)

∣∣∼1
)2

, and by

noting, from (3.30), thatW (ejω)
∣∣A(ejω)

∣∣2
(∣∣A(ejω)

∣∣∼1
)2

= W (ejω), ∀ω ∈ [−π, π]. Substitution

of (3.32) into (3.30), together with the fact that
∣∣A(ejω)

∣∣2A(ejω)∼1 = A(ejω)∗, yield (3.27). Substitu-

tion of (3.27) into (3.26) yields (3.28). This completes the proof.

3.3.2 F (z) and B(z) Given

If F (z) andB(z) are given then the minimization of the WCMSE can be stated as the following opti-

mization problem:

Optimization Problem 3.2. For a givenK > 0, frequency responseB(z) and the frequency response

magnitudes
∣∣Ωx(e

jω)
∣∣,
∣∣P (ejω)

∣∣, f(ejω), find the filterA(z) that minimizes

Da,b(x, y) = a
‖ΩxA‖2‖PBf‖2

K − ‖f‖2 + b‖(AB − 1)ΩxP‖2. (3.33)

N

The answer to this problem is given in the following:

Theorem 3.2. The solution to Optimization Problem3.2satisfies

A(ejω) =
b
∣∣P (ejω)

∣∣2B(ejω)∗

aV + b |P (ejω)|2 |B(ejω)|2
, a.e. on[−π, π]�NΩx , (3.34a)

where

V ,
‖PBf‖2
K − ‖f‖2 . (3.34b)

The frequency response of the solution,A(ejω), can take any arbitrary (bounded) value for allω ∈ NΩx .

The minimumDa,b, achieved withA(z) as in(3.34a), is

min
A(z)

Da,b(x, y) = ab
1

2π

π∫

−π

∣∣Ωx(e
jω)P (ejω)

∣∣2

a+ bK−‖f‖2

‖PBf‖2 |P (ejω)B(ejω)|2
dω (3.35)

N

Proof. Noting from (3.33) that the optimalA(ejω) must be bounded a.e. on[−π, π], we can write

A(ejω) = B(ejω)∼1W (ejω), a.e. on[−π, π], (3.36)

whereW (z) is as defined in (3.29). Substitution of (3.36) and (3.29) into (3.23) yields

Da,b(x, y) = aV ‖ΩxB
∼1W‖2 + b‖(W − 1)ΩxP‖2, (3.37)
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whereV is as in (3.34b). It is clear from (3.37) that the optimalW (ejω) can take any arbitrary bounded

values at all frequenciesω ∈ NΩx . For all other frequencies, direct application of Lemma3.16(page104)

to (3.37) yields that the transfer functionW (z) that minimizes (3.37) satisfies

W (ejω) =
b
∣∣Ωx(e

jω)
∣∣2 ∣∣P (ejω)

∣∣2

aV |Ωx(ejω)|2
(
|B(ejω)|∼1

)2

+ b |Ωx(ejω)|2 |P (ejω)|2
(3.38)

=
b
∣∣P (ejω)

∣∣2 ∣∣B(ejω)
∣∣2

aV + b |P (ejω)|2 |B(ejω)|2
, a.e. on[−π, π]�NΩx . (3.39)

We note that (3.39) follows by multiplying both sides in (3.38) by
∣∣B(ejω)

∣∣2
(∣∣B(ejω)

∣∣∼1
)2

, and by

noting, from (3.36), thatW (ejω)
∣∣B(ejω)

∣∣2
(∣∣B(ejω)

∣∣∼1
)2

= W (ejω), ∀ω ∈ [−π, π]. Substitution

of (3.39) into (3.36), together with the fact that
∣∣B(ejω)

∣∣2B(ejω)∼1 = B(ejω)∗, yield (3.34a). Substi-

tution of (3.34a) into (3.33) yields (3.35). This completes the proof.

3.4 F (z) and the Signal Transfer Function Given

If the signal transfer functionA(z)B(z) is set equal to a given transfer functionW (z), then the mini-

mization of the WCMSE reduces to the following:

Optimization Problem 3.3. For a givenK > 1 frequency responsesΩx(e
jω), P (ejω), frequency re-

sponse magnitudef(ejω), and transfer functionW (z), find the filtersA(z), B(z) that

minimize: Da,b(x, y) = a
‖ΩxA‖2‖PBf‖
K − ‖f‖2 + b‖(AB − 1)ΩxP‖2 (3.40a)

subject to:A(z)B(z) = W (z) (3.40b)

The solution to this problem is provided by the theorem below.

Theorem 3.3. The filtersA(z) andB(z) that solve Optimization Problem3.3are completely character-

ized by the following equations:

∣∣A(ejω)
∣∣ = κ

√
|P (ejω)| |Ωx(ejω)|∼1 f(ejω) |W (ejω)| , a.e. on[−π, π], (3.41a)

∣∣B(ejω)
∣∣ =

1

κ

√
|P (ejω)|∼1 |Ωx(ejω)| f(ejω)∼1 |W (ejω)| , a.e. on[−π, π], (3.41b)

whereκ > 0 is an arbitrary real constant. The minimum of(3.40a) under the constraint(3.40b), which

is achieved by filtersA(z) andB(z) satisfying(3.41), is

min
A(z)B(z)=W (z)

Da,b(x, y) = σ2
ǫ inf |F , a

〈f, |ΩxP | |W |〉2
K − ‖f‖2 + b‖(W − 1)ΩxP‖2 (3.42)

N
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Proof. Denote the numerator of the first term on the right side term of(3.40a) as

N , ‖ΩxA‖2‖(1− F )PB‖2.

Applying Cauchy-Schwartz inequality we get

N ≥ 〈|ΩxA| , |(1−F )PB|〉2 = 〈|ΩxP | |AB| , |1−F |〉2 = 〈|W | |ΩxP | , |1−F |〉2. (3.43)

Substituting the last term on the right hand side of (3.43) into (3.40a) yields (3.42), which is obtained if

and only if equality holds in (3.43). In turn, equality in (3.43) is achieved iff|ΩxA| = κ2 |(1− F )PB|,
a.e. on[−π, π], for arbitraryκ2 ∈ R+. This equation, when combined with (3.40b) and (2.1) (see

page33), leads directly to (3.41).

If
∣∣Ωx(e

jω)P (ejω)
∣∣ satisfies condition i) in Assumption3.1, then there exist stable filtersA(z) and

B(z) with the frequency response magnitudes given by (3.41). However, depending on
∣∣Ωx(e

jω)P (ejω)
∣∣,

the optimal frequency response magnitudes characterized (3.41) may be non-realizable, and can, in some

cases, lead to unstable filters. In these situations, it is always possible to obtain a performance arbitrarily

close to the optimal one by using stable filters, as shown in the next proposition.

Lemma 3.4. Denote the frequency response magnitudes characterized by(3.41a) and(3.41b) byAinf (ejω)

andBinf (ejω), respectively. If
∣∣Ωx(e

jω)P (ejω)
∣∣ satisfies condition i) in Assumption3.1, thenAinf (z)

andBinf (z) can be chosen stable; else, if
∣∣Ωx(e

jω)P (ejω)
∣∣ satisfies condition ii) in Assumption3.1,

then one can achieve an FWMSE arbitrarily close toσ2
ǫ inf |F with causal and stable filtersA(z), B(z)

such that

∣∣A(ejω)
∣∣ = A[ε](ω) ,





εB , ∀ω ∈ IεB

1/εA , ∀ω ∈ IεA

∣∣Ainf (ejω)
∣∣ , ∀ω /∈ IεA ∪ IεB ,

(3.44a)

∣∣B(ejω)
∣∣ = B[ε](ω) ,

(
A[ε](ω)

)−1

, (3.44b)

a.e. on[−π, π], where

IεB , {ω ∈ [−π, π] :
∣∣Binf (ejω)

∣∣ > 1
εB
} ∪ NP ,

IεA , {ω ∈ [−π, π] :
∣∣Ainf (ejω)

∣∣ > 1
εA
} ∪ NΩx ,

by makingεA, εB → 0. N
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Proof. We note that for anyεA, εB > 0, the functionsA[ε], B[ε] ∈ L
2, andA[ε](ω), B[ε](ω) > 0, ∀ω ∈

[−π, π]. As a consequence, one can always find causal, rational and stable filtersA(z) andB(z) satisfy-

ing (3.44). Secondly, the difference betweenσ2
ǫ inf |F andσ2

ǫ when
∣∣A(ejω)

∣∣ and
∣∣B(ejω)

∣∣ satisfy (3.44)

is given by

σ2
ǫ − σ2

ǫ inf |F =
N [ε] −Ninf
γ − ‖F‖2 , (3.45)

whereN [ε] , ‖ΩxA
[ε]‖2‖P (1− F )B[ε]‖2 andNinf , ‖ΩxAinf‖2‖P (1− F )Binf‖2. Defining

eA(ejω) , A[ε](ω)−
∣∣Ainf (ejω)

∣∣ ,

eB(ejω) , B[ε](ω)−
∣∣Binf (ejω)

∣∣ ,

and withf(ejω) as in (3.22), we can write

N [ε] −Ninf = ‖Ωx(|Ainf |+ eA)‖2 ‖fP (|Binf |+ eB)‖2 − ‖ΩxAinf‖2‖fPBinf‖2

= ‖ΩxAinf‖2
(
‖fPeB‖2 + 2〈|P |2 f2 |Binf | , eB〉

)

+ ‖fPBinf‖2
(
‖ΩxeA‖2 + 2〈|Ωx|2 |Ainf | , eA〉

)

= N
1
2

inf

[
‖fP eB‖2 + ‖ΩxeA‖2 + 2〈|P |2 f2 |Binf | , eB〉+ 2〈|Ωx|2 |Ainf | , eA〉

]
.

Each of the terms above can be upper bounded as follows:

‖fP eB‖2
(a)

≤
∫

IεA

∣∣P (ejω)
∣∣2 f(ejω)2ε2Adω +

∫

IεB

∣∣P (ejω)
∣∣2 f(ejω)2

∣∣Binf (ejω)
∣∣2 dω

(b)

≤ ε2A‖fP‖2 +

∫

IεB

∣∣P (ejω)
∣∣ ∣∣Ωx(e

jω)
∣∣ f(ejω)dω

(c)

≤ ε2A‖fP‖2 + ε2B‖Ωx‖2/κ2,

‖ΩxeA‖2
(d)

≤
∫

IεB

∣∣Ωx(e
jω)
∣∣2 ε2Bdω +

∫

IεA

∣∣Ωx(e
jω)
∣∣2 ∣∣Ainf (ejω)

∣∣2 dω

(e)

≤ ε2B‖Ωx‖2 +

∫

IεA

∣∣Ωx(e
jω)
∣∣ ∣∣P (ejω)

∣∣ f(ejω)dω

(f)

≤ ε2B‖Ωx‖2 + ε2A‖fP‖2κ2,

〈|P |2 f(ejω)2 |Binf | , eB〉
(g)

≤
∫

IεA

∣∣P (ejω)
∣∣2 f(ejω)2

∣∣Binf (ejω)
∣∣ εAdω

(h)

≤ ε2A‖fP‖2,

〈|Ωx|2 |Ainf | , eA〉
(i)

≤
∫

IεB

∣∣Ωx(e
jω)
∣∣2 ∣∣Ainf (ejω)

∣∣ εBdω

(j)

≤ ε2B‖Ωx‖2.
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In the above,(a) follows from the fact that

∣∣eB(ejω)
∣∣ ≤ εA, ∀ω ∈ IεA , and (3.46a)

−
∣∣Binf (ejω)

∣∣ < eB(ejω) < 0, ∀ω ∈ IεB . (3.46b)

(b) follows from the fact that

∣∣P (ejω)
∣∣2 ∣∣1− F (ejω)

∣∣2 ∣∣Binf (ejω)
∣∣2

=
∣∣Ωx(e

jω)
∣∣2 ∣∣Ainf (ejω)

∣∣2

=
∣∣P (ejω)

∣∣ ∣∣Ωx(e
jω)
∣∣ ∣∣1− F (ejω)

∣∣ ,

(3.47)

∀ω ∈ [−π, π], see (3.41), and fromIεA ⊂ [−π, π]. Inequality(c) follows from the fact that

∣∣Ωx(e
jω)
∣∣ < ε2Aκ

2
∣∣P (ejω)

∣∣ f(ejω), ∀ω ∈ IεA ; (3.48a)
∣∣P (ejω)

∣∣ < ε2Bκ
−2
∣∣Ωx(e

jω)
∣∣ f(ejω)∼1, ∀ω ∈ IεB , (3.48b)

which is readily obtained from (3.41) and (3.44). Inequality(d) follows from

∣∣eA(ejω)
∣∣ ≤ εB, ∀ω ∈ IεB , and (3.49a)

−
∣∣Ainf (ejω)

∣∣ < eA(ejω) < 0, ∀ω ∈ IεA . (3.49b)

Inequality(e) is due to (3.47) and to the fact thatIεB ⊂ [−π, π]. Inequality(f) stems from (3.48).

Inequality(g) follows from (3.46), while (h) follows from the fact that
∣∣Binf (ejω)

∣∣ ≤ εA, ∀ω ∈ IεA .

Inequality(i) stems from (3.49), while (j) follows from the fact that
∣∣Ainf (ejω)

∣∣ ≤ εB, ∀ω ∈ IεB .

Therefore,

N [ε] −Ninf

≤ N1/2
inf

[
(3 + κ2)‖fP‖2ε2A + (3 + κ−2)‖Ωx‖2ε2B

]
,

which completes the proof.

3.5 F (z) Given

In this section we solve the problem of finding the filtersA(z) andB(z) that minimizeDa,b(x, y) when

the feedback filterF (z) is given. More precisely, we seek the solution to the following

Optimization Problem 3.4. For a givenK > 1, and frequency response magnitudes|Ωx|, |P | andf ,

find the filtersA(z) andB(z) that minimize

Da,b(x, y) = a
‖ΩxA‖2‖PBf‖2

K − ‖f‖2 + b‖(AB − 1)ΩxP‖2. (3.50)

N
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Theorem 3.5. For any given and fixedF (z), the solution to Optimization Problem3.4is

∣∣B(ejω)
∣∣ =

∣∣P (ejω)
∣∣∼1

κ

√
G(ejω)

f(ejω)
− ξ , a.e. on[−π, π] (3.51a)

∣∣A(ejω)
∣∣ = κ

∣∣Ωx(e
jω)
∣∣∼1√

G(ejω)f(ejω)− ξf(ejω)2 , a.e. on[−π, π], (3.51b)

R
{
A(ejω)B(ejω)

}
≥ 0, I

{
A(ejω)B(ejω)

}
= 0, a.e. on[−π, π] (3.51c)

whereκ > 0 is an arbitrary real constant,ξ is the unique scalar that satisfies

K =
a

b

1

2π

π∫

−π

max

{
f(ejω)2 ,

f(ejω)
∣∣Ωx(e

jω)P (ejω)
∣∣

ξ

}
dω + [1− a

b ]‖f‖2, (3.52)

and

G(ejω) , max
{
ξf(ejω) ,

∣∣Ωx(e
jω)P (ejω)

∣∣} , ∀ω ∈ [−π, π]. (3.53)

The scalarξ is related toσ2
n andκ via

ξ =
(a/b)σ2

n

κ2
=

(a/b)‖ΩxA‖2
κ2 (K − ‖f‖2) . (3.54)

The minimum ofDa,b under the conditions of Optimization Problem3.4, achieved if and only ifA(z)

andB(z) satisfy(3.51), is

min
A,B

Da,b(x, y) =
bξ

2π

∫

|ΩxP |≥ξf

f(ejω)
∣∣Ωx(e

jω)P (ejω)
∣∣ dω +

b

2π

∫

|ΩxP |<ξf

∣∣Ωx(e
jω)P (ejω)

∣∣2 dω (3.55)

N

Proof. From the proof of Theorem3.1, the optimal signal transfer functionW (z) for a givenA(z) and

f(ejω) satisfies (3.32). On the other hand, the optimalA(z) for fixed f andW (z) is given by (3.41a).

Since the optimalA(z) andW (z) must be reciprocally optimal, these transfer functions must sat-

isfy (3.41a) and (3.32) simultaneously. From this fact, and substituting (3.41a) into (3.32), it follows

that the optimalW (z) satisfies

W (ejω) =
κ2bΩx(e

jω)
∣∣P (ejω)

∣∣ f(ejω)
∣∣W (ejω)

∣∣
aσ2

nf(ejω)2 + κ2bΩx |P (ejω)| f(ejω) |W (ejω)| , a.e. on[−π, π].

At any frequencyω ∈ [−π, π] (except possibly on a zero-measure subset of[−π, π]), the frequency

responseW (ejω) that satisfies this equation must satisfy either

W (ejω) = 0, (3.56)
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or else

W (ejω) = max

{
0, 1− ξ′ f(ejω)

|Ωx(ejω)P (ejω)|

}
, (3.57)

where

ξ′ ,
(a/b)σ2

n

κ2
=

(a/b)‖ΩxA‖2
κ2 (K − ‖f‖2) =

(a/b)〈|ΩxP | f, |W |〉
K − ‖f‖2 . (3.58)

The last two equalities in (3.58) follow by substituting (3.20) and (3.41a) into the left hand side of (3.58).

Next we show that the optimalW (z) satisfies (3.57) (andnot (3.56)) almost everywhere on[−π, π]. For

this purpose, we write (3.42) as

Da,b(x, y) = W (W ) , a
〈|ΩxP | f,W 〉2
K − ‖f‖2 + b‖(W − 1)ΩxP‖2 (3.59)

If W (ejω) does not satisfy (3.57) almost everywhere on[−π, π], then there exists a non-zero measure

set of frequenciesW such thatW (ejω) = 0 andξ′f(ejω) <
∣∣Ωx(e

jω)P (ejω)
∣∣, for all ω ∈ W. To show

that such anW (z) is not optimal, we will demonstrate that the Gateaux differential of W (W ), that is,

δW (W ;h), is negative for some choices of the functionh. Applying (2.2) (page33) to (3.59) we find

that

δW (W ;h) = 2a
〈|ΩxP | f,W 〉
K − ‖f‖2 〈|ΩxP | f, h〉+ 2b〈(W − 1) |ΩxP |2 , h〉.

Let us chooseh to be such thath(ω) = 0, ∀ω /∈W and such thath(ω) > 0, ∀ω ∈W. Then

δW (W ;h) = 2b
(
〈ξ′f |ΩxP | , h(ω)〉 − 〈|ΩxP |2 , h〉

)
= 2b〈[ξ′f − |ΩxP | , |ΩxP |h]〉 < 0.

where the inequality follows from our initial supposition on W, which implies thatξ′f(ejω) <
∣∣Ωx(e

jω)P (ejω)
∣∣ over a non-zero measure set of frequencies. Thus, the optimal W (z) is such that

W (ejω) satisfies (3.57) a.e. on[−π, π].

In order to obtain an explicit solution for the optimalW (z), we need to expressξ′ only in terms of

Ωx, P andf . For this purpose, define

G′(ejω) , max
{
ξ′f(ejω) ,

∣∣Ωx(e
jω)P (ejω)

∣∣} , ∀ω ∈ [−π, π] (3.60)

whereξ′ is as in (3.58). With this definition, (3.57) can be written as

W (ejω) = 1− ξ′f(ejω)/G′(ω). (3.61)

Substituting the latter into the right hand side of (3.58) we obtain

ξ′ = (a/b)
〈|ΩxP | f, 1− ξ′fG′−1〉

K − ‖f‖2 = (a/b)
〈G′f, 1− ξ′fG′−1〉

K − ‖f‖2 = (a/b)
〈G′, f〉 − ξ′‖f‖2

K − ‖f‖2 . (3.62)
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Solving forξ′ in (3.62) it is found that

ξ′ =
(a/b)〈G′, f〉

K −
[
1− a

b

]
‖f‖2 . (3.63)

It is easy to verify that there exists a unique value for the scalar ξ′ that satisfies (3.60) and (3.63)

simultaneously. Noting that (3.60) and (3.63) are equivalent to (3.52) and (3.53), respectively, this implies

that

ξ′ = ξ, G′(ejω) = G(ejω), ∀ω ∈ [−π, π]. (3.64)

Substitution of (3.64) into (3.63) and then into (3.61) yields

W (ejω) = 1− (a/b)〈G, f〉
K −

[
1− a

b

]
‖f‖2 ·

f(ejω)

G(ejω)
. (3.65)

Substitution of (3.65) into (3.41a) and (3.41b) yields (3.51c) and (3.51a), respectively. Substitution

of (3.65) into the right hand side of (3.42) yields

min
A,B

Da,b(x, y)

= a

〈
f , |ΩxP |

(
1− (a/b)〈G,f〉

K−[1−a
b ]‖f‖2

f
G

)〉2

K − ‖f‖2 + b

∥∥∥∥
(a/b)〈G, f〉

K − [1− a
b ]‖f‖2

· f
G

ΩxP

∥∥∥∥
2

= a

[
〈G, f〉 − (a/b)〈G,f〉

K−[1− a
b ]‖f‖2 ‖f‖2

]2

K − ‖f‖2 +
a2

b

〈G, f〉2
(
‖f‖2 − ‖(1− If )f‖2

)
(
K − [1− a

b ]‖f‖2
)2 + b‖(1− If )ΩxP‖2

= a〈G, f〉2
( (

K − [1− a
b ]‖f‖2 − a

b ‖f‖2
)2

(K − ‖f‖2)
(
K − [1− a

b ]‖f‖2
)2 +

a
b ‖f‖2(

K − [1− a
b ]‖f‖2

)2

)

− bξ2‖(1− If )f‖2 + b‖(1− If )ΩxP‖2

= a
〈G, f〉2

(
K − [1− a

b ]‖f‖2
)2
(
K − ‖f‖2 + a

b ‖Iff‖2
)
− bξ2‖(1− If )f‖2 + b‖(1− If )ΩxP‖2

= a
〈G, f〉2

K − [1− a
b ]‖f‖2

− bξ2‖(1− If )f‖2 + b‖(1− If )ΩxP‖2, (3.66)

where the indicator function,If (ejω), is defined as

If (e
jω) ,





1 ,
∣∣Ωx(e

jω)P (ejω)
∣∣ ≥ ξf(ejω)

0 ,
∣∣Ωx(e

jω)P (ejω)
∣∣ < ξf(ejω).

Rearranging terms in (3.66) leads directly to (3.55). From (3.64) and (3.60), it follows that (3.63) is

equivalent to

K =
a

b

〈G, f〉
ξ

+
[
1− a

b

]
‖f‖2. (3.67)
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Substitution of (3.53) into (3.67) yields (3.52). Also, from (3.64) and (3.58), we have that

ξ =
(a/b)σ2

n

κ2
=

(a/b)‖ΩxA‖2
κ2 (K − ‖f‖2)

This completes the proof.

Whena = b = 1, i.e., when WCMSE equals MSE, the optimal filters characterized by Theorem3.5

correspond to those found in [87]. The result in [87] was obtained solving aniso-perimetricprob-

lem [139, 140] by means of Lagrange multipliers. Interestingly, the proof of Theorem3.5, apart from

using a simple variational argument, is based only upon algebraic manipulation.

In addition, choosinga = b = 1, and assumingf(ejω) is such that
∣∣Ωx(e

jω)P (ejω)
∣∣ ≥ ξf(ejω), ∀ω ∈

[−π, π], we have that (3.55) becomes

D1,1(x, y) =
1

2π

π∫

−π

f(ejω)
∣∣Ωx(e

jω)P (ejω)
∣∣dω (3.68)

Sincef(ejω) needs to satisfy (3.76), it is straightforward to show that the functionf(ejω) that mini-

mizes (3.68) satisfies

f(ejω) =
η2
ΩxP

|Ωx(ejω)P (ejω)| , (3.69)

where

η2
ΩxP , e

1
π

R

π
−π

ln|Ωx(ejω)P (ejω)|dω (3.70)

is theminimal prediction varianceof a w.s.s. process having PSD
∣∣Ωx(e

jω)P (ejω)
∣∣2. With this result,

the condition
∣∣Ωx(e

jω)P (ejω)
∣∣ ≥ ξf(ejω), ∀ω ∈ [−π, π] becomes

∣∣Ωx(e
jω)P (ejω)

∣∣2 ≥ η2
ΩxP

K
(3.71)

The optimal filtersA(z) andB(z) are then characterized by substituting (3.69) into (3.51). The result is

the same as the one derived by the author and colleagues in [141]. This result also happens to be a special

case of the filters first characterized by Zamir, Kochman and Erez first in [142] and then in [15]. We shall

generalize (3.69) beyond the assumption (3.71) and for general choices ofa andb later in Section3.9.1.

3.6 A(z) and B(z) Given

In this case, the minimization of the WCMSE reduces to the following:
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Optimization Problem 3.5. For a givenK > 1 and given frequency responsesΩx(e
jω), P (ejω),

B(ejω), A(ejω), find a frequency response magnitudef(ejω) so as to

minimize: Da,b(x, y) = a
‖ΩxA‖2‖PBf‖
K − ‖f‖2 + b‖(AB − 1)ΩxP‖2 (3.72)

subject to:
1

2π

π∫

−π

ln f(ejω)dω ≥ 0. (3.73)

‖f‖2 < K,

f(ejω) ≥ 0, ∀ω ∈ [−π, π]. (3.74)

N

Notice that the above optimization problem is stated in terms off(ejω) (see (3.22) on page53), and

not directly in terms ofF (z). It is therefore necessary to guarantee that searching overall functions

f(ejω) that could yield a solution is equivalent to search over all filters F (z) that are feasible solu-

tions. For this purpose, we next translate the restrictionsonF (z), stated in Constraints3.1and3.2, into

equivalent constraints onf . To begin with, note that, by definition,f needs to satisfy

f(ejω) ≥ 0, ∀ω ∈ [−π, π], (3.75)

and that, since‖F‖2 = ‖F − 1‖2 − 1, see (3.19), Constraint3.2 is satisfied iff‖f‖2 < γ + 1. In

addition, a stable and strictly causalF (z) (i.e., one satisfying Constraint3.1) always leads to a function

f , see (3.22), which satisfies7

0 ≤
∫ π

−π
ln f(ejω)dω <∞. (3.76)

This result follows directly from Jensen’s formula [144] (see also the Bode Integral Theorem in, e.g., [145]).

On the other hand, as Theorem3.7 will show, if Assumption3.1 holds, then the optimalf within

the set of functions described by (3.76) and the requirement‖f‖2 < γ + 1 turns out to be piece-wise

differentiable on[−π, π], has at most a finite number of discontinuity points, and satisfies

1

2π

∫ π

−π
log f(ejω)dω = 0, and (3.77a)

0 < fmin ≤ f(ejω) ≤ fmax <∞, ∀ω ∈ [−π, π]. (3.77b)

Under these conditions, it is always possible to find a stableand strictly causal filterF (z) such that
∣∣1− F (ejω)

∣∣ approximatesf(ejω) arbitrarily well on[−π, π], as stated in the following lemma:

7Notice that (3.76) dictates a fundamental trade-off in the noise-shaping capabilities of feedback quantizers, namely, that one

can remove noise from one frequency band only at the expense of increasing it in another. This is also known as the “water-bed

effect”, see, e.g., [143]. We will discuss further implications of (3.76) in Section3.9.2.
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Lemma 3.6. Suppose thatf is piece-wise differentiable on[−π, π], that it has at most a finite number

of discontinuity points and that it satisfies(3.77). Then, for everyε > 0, there exists a (finite order)

rational, strictly proper and stableF (z) such that‖f − |1− F |‖ ≤ ε. N

Proof. Define the partition−π = ω0 < ω1 < · · · < ωp = π, where{ωi}p−1
i=1 correspond to the

discontinuity points (if any) off . Sincef is piece-wise differentiable, its first derivative over allopen

intervals(ωi, ωi+1), i ∈ {0, . . . , p − 1} is bounded by a constant0 ≤ S < ∞. For eachm > S, we

define the setTm, consisting of allcontinuousfunctionsh : [−π, π]→ R+ satisfying

1

2π

∫ π

−π
log h(ω)dω = 0, (3.78a)

fmin ≤ h(ω) ≤ fmax, ∀ω ∈ [−π, π], and (3.78b)
∣∣∣∣
d

dω
h(ω)

∣∣∣∣ ≤ m, ∀ω ∈ [−π, π]. (3.78c)

For eachm, the function

hm , arg min
h∈Tm

‖f − h‖. (3.79)

is the element inTm “closest” tof . From (3.77b), and from the fact thatf is piece-wise differentiable, it

follows that for everyε0 > 0, there exists a boundedT ≥ S such that

‖f − hm‖ ≤ ε0, ∀m > T. (3.80)

(Indeed, it is easy to obtain the bound‖f(ejω)− hm(ω)‖ ≤ (fmax − fmin)2p/m). Notice that iff had

no discontinuity points and ifm ≥ S, thenhm ≡ f (see (3.78c)), yielding‖f − hm‖ = 0.

Sincehm(ω) is continuous and piece-wise differentiable, its Fourier series converges uniformly over

[−π, π]. Thus, by definition, for everyε1 > 0, there exists anN -th order (whereN < ∞ is odd

and depends onε1) rational transfer functionHN (z) (theZ-transform of the coefficients of theN−1
2 -th

partial sum of the Fourier series off ) such that

∣∣hm(ω)−HN (ejω)
∣∣ < ε1, ∀ω ∈ [−π, π]. (3.81)

HN (z) can be written asHN (z) = G1z
−N+1

2

∏N
i=1(z − ci), whereG1 ∈ R. Thus, the transfer function

H ′
N (z) , HN (z)

G1

|G1|
z−

N−1
2

N∏

i=1,

|ci|>1

ci
|ci|

(
c∗i z − 1

z − ci

)



66 CHAPTER 3. WCMSE-OPTIMAL FILTERS FOR A GIVEN QUANTIZER SNR

is clearly biproper8, stable, minimum-phase and such that
∣∣H ′

N (ejω)
∣∣ =

∣∣HN (ejω)
∣∣ , ∀ω ∈ [−π, π],

with the first value of its impulse response being

χ , lim
z→∞

H ′
N (z) > 0.

DefineH̃N (z) , 1
χH

′
N (z), so thatlimz→∞ H̃N (z) = 1 and

∣∣∣H̃N (ejω)
∣∣∣ =

1

χ

∣∣HN (ejω)
∣∣ , ∀ω ∈ [−π, π]. (3.82)

With the choiceF (z) = 1− H̃N (z), we have

‖f − |1− F |‖ =
∥∥∥f − |H̃N |

∥∥∥ ≤ ‖f − hm‖+
∥∥∥hm − |H̃N |

∥∥∥

≤ ε0 + ε1 +
∥∥∥hm − |H̃N |

∥∥∥ . (3.83)

We now proceed to find an upper bound for the last term in the above inequality. From (3.81) and (3.82),

we have that

∥∥∥hm − |H̃N |
∥∥∥ ≤ ‖hm − |HN |‖+

∥∥∥|HN | − |H̃N |
∥∥∥

≤ ε1 +

∣∣∣∣1−
1

χ

∣∣∣∣ ‖HN‖ = ε1 +
|χ− 1|
χ
‖HN‖. (3.84)

From Jensen’s formula (see, e.g., [144]), and sinceH ′
N (z) is stable and minimum phase, we obtain

logχ =
1

2π

∫ π

−π
log
∣∣H ′

N (ejω)
∣∣dω. (3.85)

Recalling from (3.78a) and (3.79) that 1
2π

∫ π
−π log hm(ω)dω = 0, we can write (3.85) as

logχ =
1

2π

∫ π

−π
log

(∣∣HN (ejω)
∣∣

hm(ω)

)
dω =

1

2π

∫ π

−π
log

(
hm(ω) + e(ω)

hm(ω)

)
dω, (3.86)

wheree(ω) ,
∣∣HN (ejω)

∣∣− hm(ω). From (3.81), we have that

|e(ω)| =
∣∣hm(ω)−

∣∣HN (ejω)
∣∣∣∣ ≤

∣∣hm(ω)−HN (ejω)
∣∣ ≤ ε1.

Thus, choosingε1 < fmin, the last integral in (3.86) can be upper and lower bounded as

log

(
fmin − ε1
fmin

)
≤ 1

2π

∫ π

−π
log

(
hm(ω) + e(ω)

hm(ω)

)
dω ≤ log

(
fmin + ε1
fmin

)
.

It then follows from (3.86) that

1− ε1
fmin

≤ χ ≤ 1 +
ε1
fmin

⇐⇒ |χ− 1| ≤ ε1
fmin

8A transfer functionF (z) is said to be biproper if and only if0 < |limz→∞ F (z)| < ∞.
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Substituting the latter into (3.84), we obtain

∥∥∥hm − |H̃N |
∥∥∥ ≤ ε1 +

ε1
fmin − ε1

‖HN‖ ≤ ε1 +
ε1

fmin − ε1
(‖f‖+ ε0 + ε1), (3.87)

where the last inequality stems from (3.80) and (3.81). Substitution of (3.87) into (3.83) yields

‖f − |1− F |‖ ≤ ε0 + ε1 +
ε1

fmin − ε1
(‖f‖+ ε0 + ε1). (3.88)

Since‖f‖ is bounded, and from (3.77b), it follows from (3.88) that for anyε > 0, one can always choose

sufficiently large (bounded) values forT (see (3.80)) andN (see (3.81)) so thatε0 andε1 are small

enough to yield‖f − |1− F |‖ < ε. This completes the proof.

Having verified that a feasible filterF (z) can always be found to match almost any frequency re-

sponsef(ejω) to any degree of accuracy, we present the solution to Optimization problem3.5 in the

following theorem:

Theorem 3.7. The functionf that solves Optimization Problem3.5is given by

f(ejω) =

√
Kλ

|P (ejω)B(ejω)|2 + λ
, a.e. on[−π, π], (3.89a)

where the parameterλ > 0 is the unique scalar satisfying

ln(K) =
1

2π

π∫

−π

ln

(∣∣P (ejω)B(ejω)
∣∣2

λ
+ 1

)
dω. (3.89b)

The corresponding minimum ofDa,b is given by

min
f : 1

2π

R

π
−π

ln f(ejω)dω≥0

f(ejω)≥0, ∀ω∈[−π,π]

Da,b(x, y) = aλ‖ΩxA‖2 + b‖(AB − 1)ΩxP‖2. (3.89c)

N

Proof. We first define and solve a related (but simpler) optimizationproblem, namely: For any given

constantC ∈ (1,K) and transfer functionsP (z),B(z),

minimize: J (f) , ‖PBf‖2 (3.90a)

subject to:0 ≥ G1(f) , ‖f‖2 − C (3.90b)

0 ≥ G2(f) , − 1

2π

∫ π

−π
ln f(ejω)dω (3.90c)

0 ≤ f(ejω), ∀ω ∈ [−π, π].
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Clearly, the functionalsJ , G1 andG2 are convex. Moreover, for allC > 1, there exists a function

f1 ∈ L
2 such thatG1(f1) < 0 andG2(f1) < 0 (a trivial example isf1(ω) ≡

√
(C + 1)/2 ). This allows

one to apply Theorem3.17(page105). From the latter, we have that the minimizer ofJ (f) subject

to (3.90b) and (3.90c) is an extremizer of the Lagrangian

L (f) ,
1

2π

π∫

−π

∣∣P (ejω)B(ejω)
∣∣2 f(ejω)2dω + λ1

1

2π

π∫

−π

f(ejω)2dω − λ2
1

2π

π∫

−π

ln f(ejω)dω

=
1

2π

π∫

−π

(∣∣P (ejω)B(ejω)
∣∣2 + λ1

)
f(ejω)2 − λ2 ln f(ejω)dω

for someλ1, λ2 ≥ 0. An extremizer ofL (f) must be such that its Gateaux differential satisfies

δL (f ;h) = 0 for all h ∈ L
2. (3.91)

Applying the definition given in (2.2) (page33) to L (f) we obtain

δL (f ;h) =
∂L (f + αh)

∂α

∣∣∣
α=0

=
1

2π

π∫

−π

[
2
(∣∣P (ejω)B(ejω)

∣∣2 + λ1

)
f(ejω)− λ2f(ejω)−1

]
h(ω)dω. (3.92)

Notice thatf(ejω) must necessarily be strictly positive a.e. on[−π, π], since otherwise constraints (3.90c)

and (3.90b) would not be met. This guarantees that (3.92) is well defined. It is clear from (3.92)

that (3.91) holds iff

0 = 2
(∣∣P (ejω)B(ejω)

∣∣2 + λ1

)
f(ejω)− λ2f(ejω)−1, a.e. on[−π, π]

⇐⇒ f(ejω)2 =
λ2/2

|P (ejω)B(ejω)|2 + λ1

, a.e. on[−π, π]. (3.93)

Notice from the latter that, if
∣∣P (ejω)B(ejω)

∣∣ = 0 over a non-zero measure set of frequencies, thenλ1

cannot equal zero. On the other hand, ifλ2 = 0, then constraint (3.90b) could not be met. In view

of (3.217) in Theorem3.17(page105), this fact implies that constraint (3.90c) is satisfied with equality,

i.e., we have:

ln(λ2/2) =
1

2π

∫ π

−π
ln
(∣∣P (ejω)B(ejω)

∣∣2 + λ1

)
dω. (3.94)

Therefore, the minimizer ofJ (f), satisfies

f(ejω)2 = fλ1(ω)2 ,
β(λ1)

|P (ejω)B(ejω)|+ λ1
, a.e. on[−π, π], (3.95)
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for someλ1 ≥ 0, where

β(λ1) , e
1
2π

R π
−π

ln
“

|P (ejω)B(ejω)|2+λ1

”

dω
. (3.96)

It is clear from (3.96) that if |PB| is almost constant, thenfλ1(ω) = 1, a.e. on[−π, π], for all λ1 ≥ 0.

Conversely, if|PB| is not almost constant, then the value ofλ1 for which fλ1 solves (3.90) has to be

found. For this purpose, we substitute (3.95) into (3.90a), obtaining

J (fλ1) , J(λ1) = β(λ1)
1

2π

π∫

−π

∣∣P (ejω)B(ejω)
∣∣2

s(λ1, ω)
dω, (3.97)

where

s(λ1, ω) ,
∣∣P (ejω)B(ejω)

∣∣2 + λ1, ∀ω ∈ [−π, π], ∀λ1 ≥ 0

Differentiation ofJ(λ1) with respect toλ1 yields

dJ(λ1)

dλ1

= β1(λ1)
1

4π2

∫ π

−π

1

s(λ1, ω)
dω

∫ π

−π

∣∣P (ejω)B(ejω)
∣∣2

s(λ1, ω)
dω − β(λ1)

1

2π

∫ π

−π

∣∣P (ejω)B(ejω)
∣∣2

s(λ1, ω)2
dω

= β1(λ1)


 1

4π2

π∫

−π

1

s(λ1, ω)
dω

π∫

−π

∣∣P (ejω)B(ejω)
∣∣2

s(λ1, ω)
dω − 1

2π




π∫

−π

dω

s(λ1, ω)
−

π∫

−π

λ1

s(λ1, ω)2
dω






= β1(λ1)


 1

2π

π∫

−π

1

s(λ1, ω)
dω


 1

2π

π∫

−π

∣∣P (ejω)B(ejω)
∣∣2

s(λ1, ω)
dω − 1


+

1

2π

π∫

−π

λ1

s(λ1, ω)2
dω




= λ1β1(λ1)




1

2π

π∫

−π

1

s(λ1, ω)2
dω −


 1

2π

π∫

−π

1

s(λ1, ω)
dω




2

 ≥ 0, ∀λ1 ≥ 0. (3.98)

SincedJ(λ1)/dλ1 < 0, it is clear that the minimizer ofJ (f) is given by (3.95) with λ1 taking the

smallest value allowed by the constraint

C ≥ β(λ1)
1

2π

∫ π

−π

1

s(λ1, ω)
dω.

This arises by substituting (3.95) into (3.90b). Let the dependence of‖fλ1‖2 onλ1 be made explicit by

the function

c(λ1) , ‖fλ1‖2 = β(λ1)
1

2π

∫ π

−π

1

s(λ1, ω)
dω. (3.99)

We have that

dc(λ1)

dλ1
= β(λ1)



(

1

2π

∫ π

−π

1

s(λ1, ω)
dω

)2

− 1

2π

π∫

−π

1

s(λ1, ω)2
dω


 ≤ 0, (3.100)
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where the above inequality follows from Theorem3.18 (in page106) and the fact thatβ(λ1) > 0,

∀λ1 ≥ 0. The inequality is strict if and only if|PB| is not almost constant (which is the case). Thus,

the functionc(λ1) is monotonically decreasing withλ1. Combining this with (3.98), it follows that, in

order forfλ1 to be the solution of (3.90), the Lagrange multiplierλ1 must be

λ1 =





0 , if C ≥ c(0),

c−1(C) , if C ≤ c(0),

(3.101)

wherec−1(·) is the inverse of the functionc(·) defined in (3.99). Also note from (3.100), (3.101) and

the fact that|PB| is not almost constant that, ifC < c(0), thenc−1(C) > 0, and thus the optimalλ1 is

strictly positive. Therefore, the (squared) functionf that solves (3.90) is given by (3.95), whereλ1 ≥ 0

is the unique scalar that satisfies (3.101). Furthermore, we conclude from (3.99) and (3.101) that

if fo = arg min
f :G1(f),G2(f)≤0

J (f), then ‖fo‖2 ≤ c(0). (3.102)

Next, the solution to (3.90), given by (3.95) and (3.101), will be used to solve Optimization Prob-

lem3.5. For this purpose, define the functional

V (f) ,
‖PBf‖2
K − ‖f‖2 , (3.103)

and letf⋆ be the minimizer ofV (f) subject to (3.73) and (3.74). DefineC⋆ , ‖f⋆‖2. Then

V (f⋆) = min
f : 0≥G2(f)

0≤f(ejω), ∀ω∈[−π,π]

‖f‖2=C⋆

J (f)

K − C⋆ ≥ min
f : 0≥G2(f)

0≤f(ejω), ∀ω∈[−π,π]

‖f‖2≤C⋆

J (f)

K − ‖f‖2 (3.104)

In view of (3.102) the inequality in (3.104) is strict unlessC⋆ ≤ c(0). Moreover

f⋆ = fλ⋆
1
,

whereλ⋆1 is such thatc(λ⋆1) = C⋆. To findλ⋆1, we substitutefλ1 into (3.103), which yields

V (fλ1) = Φ(λ1) ,
β1(λ1)

1
2π

∫ π
−π

|PB|2
s(λ1,ω)dω

K − c(λ1)
. (3.105)

Notice that Optimization Problem3.5has been reduced to finding the scalarλ⋆1 that minimizes the func-
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tion Φ(λ1). For this purpose, we simply differentiateΦ(λ1) and make use of (3.90a) to obtain

dΦ(λ1)

dλ1
=


c(λ1)

1

2π

π∫

−π

|PB|2
s(λ1, ω)

dω − β(λ1)
1

2π

π∫

−π

|PB|2
s(λ1, ω)2

dω


 (K − c(λ1))

+


β(λ1)

(
1

2π

∫ π

−π

1

s(λ1, ω)
dω

)2

− β(λ1)
1

2π

π∫

−π

1

s(λ1, ω)2
dω


 J(λ1)

=


 1

4π2

π∫

−π

1

s(λ1, ω)
dω

π∫

−π

|PB|2
s(λ1, ω)

dω − 1

2π

π∫

−π

|PB|2
s(λ1, ω)2

dω


β(λ1)(K − c(λ1))

+





 1

2π

π∫

−π

1

s(λ1, ω)
dω




2

− 1

2π

π∫

−π

1

s(λ1, ω)2
dω


β(λ1)J(λ1)

=
β(λ1)

4π2

π∫

−π

1

s(λ1, ω)
dω

π∫

−π

|PB|2 (K − c(λ1)) + J(λ1)

s(λ1, ω)
dω

− β(λ1)

2π

π∫

−π

|PB|2 (K − c(λ1)) + J(λ1)

s(λ1, ω)2
dω

Noting thatΦ(λ1) = J(λ1)/(K − c(λ1)), the above can be re-written as

dΦ(λ1)

dλ1
= β(λ1)(K − c(λ1))

[
1

4π2

π∫

−π

1

|PB|2 + λ1

dω

π∫

−π

|PB|2 + Φ(λ1)

|PB|2 + λ1

dω

− 1

2π

π∫

−π

|PB|2 + Φ(λ1)

(|PB|2 + λ1)2
dω

]
(3.106)

Application of Theorem3.18to (3.106) leads directly to the conclusion that

dΦ(λ1)

dλ1
= 0 ⇐⇒ Φ(λ1) = λ1 (3.107a)

dΦ(λ1)

dλ1
< 0 ⇐⇒ Φ(λ1) > λ1 (3.107b)

dΦ(λ1)

dλ1
> 0 ⇐⇒ Φ(λ1) < λ1 (3.107c)

Substituting (3.105) into the right hand side of (3.107a) yields

λ1K = β1(λ1)
1

2π

∫ π

−π

|PB|2

|PB|2 + λ1

dω + λ1c(λ1)

= β1(λ1)


 1

2π

∫ π

−π

|PB|2

|PB|2 + λ1

dω + λ1
1

2π

π∫

−π

1

|PB|2 + λ1

dω


 = β(λ1)
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Thus,

dΦ(λ1)

dλ1
= 0 ⇐⇒ K = k(λ1) ,

β(λ1)

λ1
=

e
1
2π

R

π
−π

ln(|PB|2+λ1)dω

λ1
(3.108)

The functionk(λ1) is monotonically decreasing for allλ1 > 0, since

dk(λ1)

dλ1
=
β(λ1)

λ2
1


 1

2π

π∫

−π

λ1

|PB|2 + λ1

dω − 1


 = −β(λ1)

λ2
1

1

2π

π∫

−π

|PB|2

|PB|2 + λ1

dω < 0.

Therefore, the value ofλ1 that satisfies the right hand side of (3.108) (and yieldsdΦ(λ1)/dλ1 = 0)

is unique. From this and the fact thatΦ(λ1) and its derivative are continuous functions, together

with (3.107), we conclude that the value ofλ1 that satisfies the right hand side of (3.108) is the unique

minimizer ofΦ(λ1). This implies that

min
f

V (f) = min
λ1

Φ(λ1) = λ1, (3.109)

which substituted into (3.103) and (3.72) yields (3.89c). It also implies that the optimalf is given

by (3.95). In these solutions,λ1 takes the unique value that satisfies the right hand side of (3.108). The

latter equation is precisely (3.89b). In turn, (3.89a) is obtained by substituting (3.89b) into (3.95). This

completes the proof.

3.7 B(z) Given

If only the post-filterB(z) is given, then the minimization of the WCMSE reduces to the following

Optimization Problem 3.6. For any givenK > 1 and transfer functionB(z), find the frequency re-

sponseA(ejω) and the frequency response magnitudef(ejω) that

minimize: Da,b(x, y) = a
‖ΩxA‖2‖PBf‖2

K − ‖f‖2 + b‖(AB − 1)ΩxP‖2 (3.110a)

subject to: 0 ≤ 1

2π

∫ π

−π
ln f(ejω)dω, (3.110b)

‖f‖2 < K, (3.110c)

f(ejω) ≥ 0, ∀ω ∈ [−π, π]. (3.110d)

Theorem 3.8. The solution to Optimization Problem3.6is

A(ejω) =
b
∣∣P (ejω)

∣∣2B(ejω)∗

aλ+ b |P (ejω)|2 |B(ejω)|2
(3.111a)

f(ejω)2 =
Kλ

|P (ejω)B(ejω)|2 + λ
, (3.111b)
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whereλ is the unique scalar that satisfies

ln(K) =
1

2π

π∫

−π

ln

(∣∣P (ejω)B(ejω)
∣∣2

λ
+ 1

)
dω. (3.111c)

The minimumDa,b, achieved withA(z) andf(ejω) as in(3.111), is

min
A(z),f(ejω)

Da,b(x, y) = abλ
1

2π

π∫

−π

∣∣Ωx(e
jω)P (ejω)

∣∣2

aλ+ b |P (ejω)B(ejω)|2
dω (3.112)

N

Proof. If B(z) is given, then the optimalf(ejω) does not depend onA(z) (see3.110a). Furthermore,

the optimalf(ejω) is given by (3.89a). On the other hand, the optimalA(z) givenB(z) equals the

optimalA(z) given the sameB(z) and givenf(ejω) is optimal for thatB(z). Thus, the optimalA(z)

satisfies (3.34) with f(ejω) as in (3.89a). Furthermore, from Theorem (3.7), the optimalf(ejω) given

B(z) is such thatV in (3.34b) equalsλ (see (3.109) and (3.103)). When substituted into (3.34a), this

yields (3.111a). Also, replacingV by λ in (3.35) yields (3.112). This completes the proof.

3.8 H(z) (pre-filter) Given

Here we find the filters that minimize the frequency weighted WCMSE for a given quantizer SNR under

the architectural limitation that the pre-filter is given and fixed. In this case, it is necessary to make a

distinction between the two schemes shown in Fig.3.2, as discussed already in Section1.2.2. For the

configuration corresponding to Fig.3.2-(a), it is implicit that one can both measure and act upon the

signal coming out of the pre-filterA(z). As a consequence, even ifA(z) is fixed, one could alter the

transfer function from{x(k)} to {v(k)} at will. Hence, assuming in this architecture that the pre-filter

A(z) is fixed and given makes little practical sense.

By contrast, the scenario in which the pre-filter is fixed and given is better represented by the config-

uration shown in Fig.3.2-(b). This scheme assumes implicitly that one can add signals to the input of

the scalar quantizer, but not measure the result of this addition. Hence, it is not possible to bypass the

limitations imposed by a fixedH(z), i.e., one cannot alter the transfer function from{x(k)} to {v(k)}
without changing the transfer function from{n(k)} to {v(k)} also.

Focusing on the scheme of Fig.3.2-(b), if only the pre-filterH(z) is fixed and given, then the mini-

mization of the WCMSE reduces to the following:
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Optimization Problem 3.7. For any givenK > 1 andH(z), find the filterL(z) and the frequency

response magnitudef(ejω) that

minimize: Da,b(x, y) = a
‖PL‖2‖ΩxHf‖2

K − ‖f‖2 + b‖(HL− 1)Ωx‖2 (3.113a)

subject to: 0 ≤ 1

2π

∫ π

−π
ln f(ejω)dω, (3.113b)

‖f‖2 < K, (3.113c)

f(ejω) ≥ 0, ∀ω ∈ [−π, π]. (3.113d)

Theorem 3.9. The solution to Optimization Problem3.7is

L(ejω) =
b
∣∣Ωx(e

jω)
∣∣2H(ejω)∗

aλ+ b |Ωx(ejω)|2 |H(ejω)|2
(3.114a)

f(ejω)2 =
Kλ

|Ωx(ejω)H(ejω)|2 + λ
, (3.114b)

whereλ is the unique scalar that satisfies

ln(K) =
1

2π

π∫

−π

ln

(∣∣Ωx(e
jω)H(ejω)

∣∣2

λ
+ 1

)
dω. (3.114c)

The minimumDa,b, achieved withL(z) andf(ejω) as in(3.114), is

min
L(z),f(ejω)

Da,b(x, y) = abλ
1

2π

π∫

−π

∣∣Ωx(e
jω)P (ejω)

∣∣2

aλ+ b |Ωx(ejω)H(ejω)|2
dω (3.115)

N

Proof. The cost functional in (3.113a) has the same structure as that in Theorem3.8. More precisely, the

constraint of a fixedH(z) in (3.113a) plays the same role as the constraint of a fixedB(z) in (3.110a).

Thus, the solution is given by (3.111), replacingΩx(e
jω) byP (ejω),B(ejω) byH(ejω), andA(ejω) by

L(ejω), which yields (3.114). This completes the proof.

3.9 No Constraints:

The WCMSE Optimal Feedback Quantizer

We now address the problem of finding the frequency responsesof A(z), B(z) andF (z) that minimize

the WCMSE for a given quantizer SNRγ = K−1. These frequency responses characterize the WCMSE-

optimal FQ when all three degrees of freedom are available.
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Optimization Problem 3.8. For any givenK > 1, find the filtersA(z),B(z) and the frequency response

magnitudef(ejω) that

minimize: a
‖ΩxA‖2‖PBf‖2

K − ‖f‖2 + b‖(AB − 1)Ωx‖2 (3.116a)

subject to: 0 ≤ 1

2π

∫ π

−π
ln f(ejω)dω, (3.116b)

‖f‖2 < K, (3.116c)

f(ejω) ≥ 0, ∀ω ∈ [−π, π]. (3.116d)

N

The solution to Optimization Problem3.8is given in the next theorem, for the cases in whicha ≤ 2b.

The latter restriction is imposed in order to avoid the high mathematical complexity that arises whenever

a > 2b and the distortion is larger than a given threshold, as explained in footnote9 of the proof. We

shall say more about the implications of the relationshipa > 2b later, when we argue, in in Sections4.3.2

and4.7, that the conditiona ≤ 2b is satisfied in many cases of practical interest.

Theorem 3.10. If b/a ≥ 2, the solution to Optimization Problem3.8is

f(ejω) =

√
Kα√

G(ejω)2 +
[
1− a

b

]
α +G(ejω)

, (3.117a)

A(ejω)B(ejω) = 1− (a/b)α/2(√
G(ejω)2 +

[
1− a

b

]
α +G(ejω)

)
G(ejω)

, (3.117b)

∣∣B(ejω)
∣∣ =

∣∣P (ejω)
∣∣∼1

κ

√√√√
(√

G(ejω)2 +
[
1− a

b

]
α +G(ejω)

)2

− α
2
√
Kα

, (3.117c)

∣∣A(ejω)
∣∣ = κ

∣∣Ωx(e
jω)
∣∣∼1

√√√√√√
√
Kα

2


1− α

(√
G(ejω)2 +

[
1− a

b

]
α +G(ejω)

)2


 , (3.117d)

a.e. on[−π, π], whereα > 0 is the unique scalar that satisfies

1

2
ln(K) =

1

2π

∫

|ΩxP |≥ a
√

α
2b

ln



√
|P (ejω)Ωx(ejω)|2

α
+
[
1− a

b

]
+

∣∣P (ejω)Ωx(e
jω)
∣∣

√
α


 dω (3.118)

and

G(ejω) , max
{a
b

√
α /2 ,

∣∣Ωx(e
jω)P (ejω)

∣∣
}
, ∀ω ∈ [−π, π]. (3.119)
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The scalarα is related toK, κ and the varianceσ2
n via

σ2
n =

κ2

2

√
α/K (3.120)

The minimumDa,b(x, y), achieved with(3.117), is

min
A(z),B(z),f(ejω)

Da,b(x, y) =
a

2π

∫

|ΩxP |≥ a
√

α
2b

(α/2)
∣∣Ωx(e

jω)P (ejω)
∣∣

√
|Ωx(ejω)P (ejω)|2 + [1− a

b ]α + |Ωx(ejω)P (ejω)|
dω

+
b

2π

∫

|ΩxP |< a
√

α
2b

∣∣Ωx(e
jω)P (ejω)

∣∣2 dω (3.121)

N

Proof. Clearly, the optimal filters must also be reciprocally optimal. In particular, Theorem3.7 must

hold. This implies that‖PBf‖2/(K − ‖f‖2) = λ, see (3.109) and (3.103). Substituting the latter

into (3.54), we have that

ξ =
a

b
· ‖ΩxA‖2
κ2‖PBf‖2λ. (3.122)

Since the optimal filters also satisfy Theorem3.3 (page56), we have from (3.41) thatκ2‖PBf‖2 =

1
κ2 ‖ΩxA‖2. Substitution of the latter into (3.122) yields

ξ =
a

b
κ2λ = (1/2)ab

√
α/K . (3.123)

where

α , 4Kκ4λ2 = 4K
(
b
a

)2
ξ2. (3.124)

If the filters are reciprocally optimal, then (3.51a), (3.89a) and (3.89b) hold simultaneously. In par-

ticular, from (3.89a),

f(ejω)2 =
Kλ

|P (ejω)|2 |B(ejω)|2 + λ
(3.125)

From (3.53) and (3.51a) it follows that
∣∣P (ejω)B(ejω)

∣∣ = 0 ⇐⇒ G(ejω) = ξf(ejω) ⇐⇒
∣∣Ωx(e

jω)P (ejω)
∣∣ ≤ ξf(ejω), for any given frequencyω ∈ [−π, π]. On the other hand, from (3.125) we

have that
∣∣P (ejω)B(ejω)

∣∣ = 0 ⇐⇒ f(ejω) =
√
K . Thus

∣∣Ωx(e
jω)P (ejω)

∣∣ ≤ ξf(ejω) ⇐⇒ ξf(ejω) = ξ
√
K =

a

b
·
√
α

2
. (3.126)

Substitution of (3.126) into (3.53) yields (3.119). Substitution of (3.123) into (3.54) leads directly

to (3.120).
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On the other hand, substitution of (3.51a) into (3.125) yields

f(ejω)2 =
Kλ

1
κ2

(
G(ejω)
f(ejω) − ξ

)
+ λ

=
Kκ2λ

G(ejω)
f(ejω) + κ2λ− ξ

⇐⇒

0 = [κ2λ− ξ]f(ejω)2 +G(ejω)f(ejω)−Kκ2λ,

where we recall from (3.53) that

G(ejω) = max
{
ξf(ejω), |ΩxP |

}
, ∀ω ∈ [−π, π]. (3.127)

If κ2λ− ξ = 0, then the optimalf(ejω) is

f(ejω) =
Kκ2λ

G(ejω)
=

√
Kα/4

G(ejω)
, a.e. on[−π, π]. (3.128)

Otherwise, ifκ2λ− ξ 6= 0,

f(ejω) =
±
√
G(ejω)2 + 4Kκ2λ[κ2λ− ξ] −G(ejω)

2[κ2λ− ξ] =
±
√
G(ejω)2 + 4Kκ2λ[κ2λ− a

bκ
2λ] −G(ejω)

2[κ2λ− a
bκ

2λ]

=
±
√
G(ejω)2 + 4Kκ4λ2[1− a

b ] −G(ejω)

2κ2λ[1 − a
b ]

=
±
√
G(ejω)2 + [1− a

b ]α −G(ejω)

[1− a
b ]
√
α/K

(3.129)

It is now necessary to determine which sign before the squareroot in (3.129) yields the solution. We

will next show that the minus sign (−√ ) yields an infeasible solution. To this end, we note from (3.127)

that a feasible solutionf(ejω) must satisfy the condition

0 ≤ ξf(ejω)

G(ejω)
≤ 1 (3.130)

for all ω ∈ [−π, π]. Substituting (3.123) and (3.129) with the choice−√ into (3.130), the latter condition

becomes

ξf(ejω)

G(ejω)
=

1 +
√

1− [ a
b −1]α

G(ejω)2

2 ba [ab − 1]
, (3.131)

from where it follows immediately that the choice−√ is infeasible ifa < b. On the other hand, when

a > b, the right-hand side of (3.131) increases monotonically withG. Since, from (3.126) and (3.127)

G(ejω) ≥ a
2b

√
α , ∀ω ∈ [−π, π], we have from (3.131) that

ξf(ejω)

G(ejω)
≥

1 +
√

1− [ a
b −1]α

( a
2b

√
α )2

2 ba [ab − 1]
=

1 + 2b
a

∣∣ a
2b − 1

∣∣
2− 2b

a

=
1 +

∣∣1− 2b
a

∣∣
1 + 1− 2b

a

≥ 1. (3.132)

The last inequality is strict ifb < a < 2b, and becomes equality only ifa ≥ 2b. Thus, whena < 2b,

choosing the minus sign before the squared root in (3.129) leads to an infeasible solution for allω ∈
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[−π, π]. On the other hand, ifa = 2b, then the minus sign before the squared root in (3.129) becomes

feasible only for frequencies at which
∣∣Ωx(e

jω)P (ejω)
∣∣ ≤ a

2b

√
α . However, the solution obtained with

the plus before the squared root in (3.129) yields the same result over those frequencies.9 With the choice

+
√ in (3.129), the latter becomes (3.117a). Notice that this solution also yields (3.128) if κ2λ− ξ = 0

(which happens if and only ifa = b). In addition, noting from (3.125) that

(
∣∣P (ejω)B(ejω)

∣∣2 + λ)/λ = K/f(ejω)2 =

(√
G(ejω)2 + [1− a

b ]α +G(ejω)
)2

α
,

and substituting this into (3.89b), we conclude thatα is the unique scalar that satisfies

1

2
ln(K) =

1

2π

∫ π

−π
ln

(√
G(ejω)2 + [1 − a

b ]α +G(ejω)√
α

)
dω. (3.133)

We have that (3.125) is precisely (3.117a), and that (3.119) together with (3.133) lead directly to (3.118).

Substitution of (3.117a) into (3.55) yields (3.121). Finally, substitution of (3.125) and (3.123) into (3.51)

yields (3.117c) and (3.117d). This completes the proof.

3.9.1 Special Cases

By using Theorem3.10, it is possible to characterize the optimal filters and SNR-distortion performance

of optimal feedback quantizers for each possible combination of values for the weightsa, b. Two relevant

special cases are discussed below.

MSE-Optimal Feedback Quantization

If one setsa = b = 1, then WCMSE is equivalent to standard MSE. In this case, Theorem3.10yields

that, for an MSE-optimal feedback quantizer,

f(ejω) =

√
Kα/4

G(ejω)
, (3.134a)

A(ejω)B(ejω) = 1− α/4

G(ejω)2
, (3.134b)

∣∣B(ejω)
∣∣ =

∣∣P (ejω)
∣∣∼1

κ

√
G(ejω)2 − α/4√

Kα/4
, (3.134c)

∣∣A(ejω)
∣∣ = κ

∣∣Ωx(e
jω)
∣∣∼1

√
√
Kα/4

[
1− α/4

G(ejω)2

]
(3.134d)

9 On the other hand, ifa > 2b, both choices of sign lead to a feasible over all frequenciesω at which
˛

˛Ωx(ejω)P (ejω)
˛

˛ <

a
2b

√
α . This difficulty is avoided by excluding the casesa > 2b from the analysis.
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a.e. on[−π, π], whereα > 0 is the unique scalar that satisfies

1

2
ln(K) =

1

2π

∫

|ΩxP |≥
√
α/4

ln

(∣∣P (ejω)Ωx(e
jω)
∣∣

√
α/4

)
dω (3.135)

and

G(ejω) , max
{√

α/4 ,
∣∣Ωx(e

jω)P (ejω)
∣∣
}
, ∀ω ∈ [−π, π]. (3.136)

The minimumD1,1(x, y), achieved with (3.134), is

min
A(z),B(z),f(ejω)

D1,1(x, y) =
1

2π

π∫

−π

min
{α

4
,
∣∣Ωx(e

jω)P (ejω)
∣∣2
}
dω (3.137)

Notice that if
∣∣P (ejω)

∣∣ ≡ 1, and with the change of variable

θ = α/4, (3.138)

the expression for the MSE in (3.137) is equivalent to the one given by the water-filling equations (1.1).

Moreover, the filters characterized by (3.134) are equivalent to the filters that achieve the quadratic Gaus-

sian rate distortion function in [15]. Notice also that, with the change of variable (3.138), the quantity

1
2 ln(K) in (3.135) plays the role of the rateR(D) in (1.1). In Chapter5 we shall see that this correspon-

dence is not accidental, and that it has important implications in the design of optimal ED pairs.

Optimal Perfect Reconstruction Feedback Quantization

If one setsa = 1 and letsb → ∞, then from (3.117b) the optimal filtersA(z) andB(z) satisfy the

perfect reconstruction condition

A(ejω)B(ejω) = 1, ∀ω such thatSx(e
jω)P (ejω) 6= 0. (3.139)

As a consequence, the WCMSE in this case is made of source-uncorrelated reconstruction error only.

From (3.117), the optimal frequency responses fora = 1 andb =∞ are found to be:

f(ejω) =

√
Kα√

g(ω)2 + α + g(ω)
, (3.140a)

∣∣B(ejω)
∣∣ =

∣∣P (ejω)
∣∣∼1

κ

√√√√g(ω)
(√

g(ω)2 + α + g(ω)
)

√
Kα

, (3.140b)

∣∣A(ejω)
∣∣ = κ

∣∣Ωx(e
jω)
∣∣∼1

√ √
Kα g(ω)√

g(ω)2 + α + g(ω)
(3.140c)
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a.e. on[−π, π], where

g(ω) ,
∣∣P (ejω)Ωx(e

jω)
∣∣ , ∀ω ∈ [−π, π], (3.141)

and whereα > 0 is the unique scalar that satisfies

1

2
ln(K) =

1

2π

π∫

−π

ln

(√
g(ω)2

α
+ 1 +

g(ω)√
α

)
dω. (3.142)

The minimumD1,∞(x, y), achieved with (3.117), is

min
A(z),B(z),f(ejω)

D1,∞(x, y) =
1

2π

π∫

−π

(α/2)g(ω)√
g(ω)2 + α + g(ω)

dω (3.143)

Recalling thatκ is an arbitrary scalar, (3.117) is exactly the solution for optimal perfect reconstruction

feedback quantizers first derived by the author and colleagues in [118].

It can be shown that the right-hand side of (3.142) is a convex, monotonically decreasing function of

α. This guarantees that, for any givenK, the value ofα satisfying (3.142) can be easily found via, for

example, the bisection algorithm [146], or, indeed, by any other convex optimization method [147].

It is interesting to note that for the perfect reconstruction case, we have

K → 1 ⇐⇒ α→∞. (3.144)

In such a case, it can be seen from (3.140a) that the optimal noise-shaping frequency response magnitude

f(ejω) converges uniformly to1, i.e., the feedback filerF (z) approaches0. This situation corresponds to

not using feedback. In view of (3.140), expression (3.144) also implies that whenK → 1,A(z) andB(z)

converge tohalf-whitening filters, which are known to be the best perfect reconstruction pre/post-filters

in the absence of feedback, see, e.g., [55,81].

An important feature of the filters characterized in (3.117) is that they all can be implemented with

arbitrary accuracy by usingcausalfilters (see also lemmas3.6 and 3.4, in pages65 and 57, respec-

tively). This is not only attractive in applications wherein there exists feedback between reconstruction

and source, but will also be instrumental in our derivation of the bounds for the causal rate-distortion

function in Chapter6.

3.9.2 The Importance of Taking Account of Fed Back Quantization Noise

If one tried to optimize the filters of a FQ neglecting fed backquantization noise, i.e., by trying to

minimizea‖AΩx‖2‖(1−F )BP‖2

γ + b‖(AB − 1)ΩxP‖2 (compare to (3.23)), then one would obtain a (sub

optimal) feedback filter, namelyF0(z), which satisfies

|1− F0| = ηΩxP |ΩxP |−1 , (3.145a)
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where the minimal prediction varianceηΩxP , already defined in (3.70) (page63), is given by

ηΩxP = e
1
2π

R

π
−π

ln|Ωx(ejω)P (ejω)|dω, (3.145b)

provided|ΩxP | > 0, ∀ω ∈ [−π, π]. This is the solution one obtains by settingK → ∞ in (3.117a)

and (3.118). It corresponds to the result obtained in [81], which was restricted to the cases whereγ ≫
‖F0‖2. For the caseΩx(e

jω) ≡ 1, the noise transfer function magnitude|1− F0(z)| is also equivalent to

that derived in [88]. The latter is optimal in the sense of minimizing the ratioσ2
ǫ /σ

2
n, but not in the sense

of minimizingσ2
ǫ for a fixed quantizer SNRγ.

As it can be seen from (3.117a) and (3.118), f⋆, in general, does indeed approachf0 = |1− F0| as

γ → ∞. Hence, one can expectF0 to benearoptimal in situations whereγ ≫ ‖F0‖2, see (3.23). The

latter is often satisfied at high bit-rates (i.e., when many quantization levels are available). However, for

any given number of quantization levels, it is easy to find practical situations whereΩxP is such that

‖F0‖2 is comparable to (or greater than)γ. To see this, suppose that there exist scalarsc > 1, ℓ > 0 and

H ≥ c ℓ such that

∣∣Ωx(e
jω)P (ejω)

∣∣ ≥ ℓ, ∀ω ∈ [−π, π], (3.146)
∣∣Ωx(e

jω)P (ejω)
∣∣ ≤ c ℓ, ∀ω ∈ L, (3.147)

∣∣Ωx(e
jω)P (ejω)

∣∣ ≥ H, ∀ω ∈ H, (3.148)

whereL andH are subsets of[−π, π] having Lebesgue measures|L| and|H|, respectively. Then

‖1− F0‖2 = exp


 1

2π

∫

ω∈H

ln
∣∣Ωx(e

jω)P (ejω)
∣∣2 dω +

1

2π

∫

ω/∈H

ln
∣∣Ωx(e

jω)P (ejω)
∣∣2 dω




×


 1

2π

∫

ω/∈L

dω

|Ωx(ejω)P (ejω)|2
+

1

2π

∫

ω∈L

dω

|Ωx(ejω)P (ejω)|2




≥ exp

( |H|
2π

lnH2 +
2π − |H|

2π
ln ℓ2

)[ |L|
2π

(c2ℓ2)−1

]

=
|L|

2πc2
(
H2
) |H|

2π
(
ℓ2
)− |H|

2π =
|L|

2πc2

(
H

ℓ

) |H|
π

Recalling that‖F − 1‖2 = ‖F‖2 + 1 (see (3.19)), the above yields

‖F0‖2 ≥
|L|

2πc2

(
H

ℓ

)|H|/π
. (3.149)

This implies thata large ‖F0‖2 is obtained for any productΩxP whose magnitude becomes signifi-

cantly small (in relative terms) over certain frequency bands. (An example is included in Section3.11

below.) A direct consequence is that, for these cases, and inview of (3.23), trying to match|1− F | to
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ηΩxP |ΩxP |−1 will yield a performance far from optimal. Also, this also increases the risk of incurring

large limit-cycle oscillations if no clipping is employed (see, e.g., [43,78]).

The (possibly unbounded) increase of‖F‖2 as |1− F | approachesηΩxP |ΩxP |−1 seems to have

been first observed in [79]. Several heuristic solutions have been proposed since then (see, e.g., [43, 46,

78, 82, 83, 88]). In contrast to these approaches, the methodderived in the present work allows one to

characterize the true optimal filters, by explicitly takinginto account‖F‖2 in the cost functional to be

minimized (see (3.23)). In other words, our method not only guarantees that‖F‖2 < γ, but also yields

the true optimal filters. Our proposal also has the advantageof being applicable to arbitrary input spectra

and frequency weighting functions, regardless of how smallthe quantizer SNRγ may be, within the

scope of validity of the Linear Model.
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3.10 Comparative Analysis

3.10.1 Optimal Frequency Responses

The frequency responses of the optimal filtersA(z), B(z) and1 − F (z) for each architecturally con-

strained scenario are listed in Table3.1. It is interesting to note that, in all the cases, the optimalfre-

quency response magnitudes
∣∣A(ejω)

∣∣,
∣∣B(ejω)

∣∣, f(ejω) are, in general, different from unity, unless
∣∣Ωx(e

jω)P (ejω)
∣∣ is constant over[−π, π]. This implies that, unless the frequency weighted input spec-

trum has flat PSD, it is always necessary to utilize all the available degrees of freedom in order to achieve

optimal performance, in each scenario. This fact goes against the intuitive idea that, in the scheme shown

in Fig 3.1, the filterF (z) is necessary only when error frequency weighting makes noise-shaping a use-

ful tool to reduce reconstruction error. It also contradicts the perhaps natural thinking that the pre-filter

A(z) is required only when the input has a non-flat spectrum that gives room for predictive pre-filtering.

In reality, and as can be seen from Table3.1, pre-filtering is also beneficial whenΩx(e
jω) is constant

andP (ejω) is not, while noise-shaping is required for optimality, even whenP (ejω) is constant, as long

asΩx(e
jω) is not. More generally, it is clear that, unless

∣∣Ωx(e
jω)P (ejω)

∣∣ is constant, every degree of

freedom not available, or not exploited, in the design of a feedback quantizer, will always entail a penalty

in operational rate-distortion performance.

3.10.2 Optimal Signal Spectra

Here we will analyze the PSD of the output of the quantizer,Sw(ejω), and the PSD of the frequency

weighted reconstruction error,Sǫ(ejω). Table3.2 lists the expressions for the optimalSw(ejω) in each

scenario, derived from the equations characterizing the optimal filter frequency responses. It can be

seen from Table3.2 that, unlessΩx(e
jω) andP (ejω) and the frequency responses assumed given in

each scenario take special forms,Sw(ejω) is, in general, not constant. However, when all three degrees

of freedom are available (last row in Table3.2), Sw(ejω) is constantfor any input spectral density,

frequency weighting criterion, and choice ofa, b. Having a flat PSD in the output ofQ is beneficial,

since it allows one to achieve near optimal coding of the quantizer output with a memory-less entropy

coder (see (2.60) on page42 and Lemma5.2 in Section5.2). Conversely, if any of the three degrees

of freedom is not utilized optimally, then rate-distortionperformance can be improved by using entropy

coding with memory. Indeed, it will be shown in Chapter5 (Section5.2.2) that, when using subtractively

dithered scalar quantization, entropy coding with infinitememory is capable of substituting the lack of

any (but not more than one) of the three degrees of freedom associated with an FQ scheme.

Table3.2 also summarizes the expressions for the PSD of the frequencyweighted reconstruction
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Table 3.1: Optimal frequency response magnitudes

Given OptimalA(z) OptimalB(z) Optimalf Where
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Table 3.2: Optimal Power Spectral Densities. Sw(ejω) is the PSD of the output of the scalar

quantizer; Sǫ(e
jω) is the PSD of the frequency weighted reconstruction error, see Fig. 3.1.

Given OptimalSw(ejω) OptimalSǫ(ejω) Where
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error,Sǫ(ejω), for each scenario. Careful analysis of these expressions reveals that, except for specific

cases ofΩx,P and the given frequency responses for each scenario,Sǫ(e
jω) is not constant over[−π, π].

However, when all three degrees of freedom are available fordesign (last row in Table3.2), and ifa = b,

thenSǫ(ejω) is constant for allω such that
∣∣P (ejω)

∣∣2 Sx(e
jω) ≥ (ab )

2 α
4 = α

4 .

3.10.3 Optimal Performance

The equations characterizing the optimal trade-off between quantizer SNR and WCMSE are listed in

Table 3.3. This table is a summary of the rate-distortion (or more precisely, SNR-distortion) results

derived in Theorems3.1–3.10. Using these results, it is possible to determine the SNR-distortion effect of

having any subset of the filtersA(z),B(z) andF (z) fixed and given. Only in the scenarios corresponding

to the first three rows of Table3.3 is it possible to findDa,b directly from a given value ofK. In all the

other scenarios,Da,b(x, y) is a bijective function ofK. In some cases,Da,b(x, y) andK are connected

by a scalar parameter, which needs to be determined numerically. The latter is not a big difficulty since,

in all casesK is related to these scalar parameters (α or λ) through monotonic functions. Moreover, if

a ≤ b, then it can be shown that the functions that relateK to these scalar parameters are convex.

3.11 Simulation Example

To illustrate our results, we present below an example in which we design the filters of a Perfect Recon-

struction FQ aimed at digitally encoding audio signals in a psycho-acoustically optimal manner. Recall

that an optimal Perfect Reconstruction FQ is obtained by solving Optimization Problem3.8with a = 1

andb→∞, see also Section3.9.1.

The details of the simulation model, as well as the results ofboth the simulations and the numerical

optimizations are given below.

3.11.1 Simulation Setup

The PSD of audio signals was modeled as unit-variance zero mean white Gaussian noise filtered through

Ωx(z) = 0.09315
(
z+0.6773
z−0.8588

)
. The magnitude of the frequency response ofΩx(z) is depicted in Fig.3.3

(solid line). The frequency weighting filterP (z) considered has a frequency response magnitude which

approximates the psycho-acoustic curve derived in [46, Table 1], thus modelling the sensitivity of human

hearing to noise10. The corresponding frequency response is plotted with a dotted line in Fig.3.3 (the

sampling frequency is44.1 [kHz]). The resultingg = |ΩxP | for theseΩx andP (z) is also shown in the

10The coefficients ofP (z) can be found at http://msderpich.no-ip.org/research



3.11. SIMULATION EXAMPLE 87

Table 3.3: Minimum Da,b(x, y) and K = γ + 1 (γ is the SNR of Q)

Given MinimumDa,b(x, y) K = γ + 1

A, f ab 1
2π

π
R

−π

|ΩxP |2f2

af2+b
|ΩxA|2

σ2
n

dω K = ‖ΩxA‖2

σ2
n

+ ‖f‖2

B, f ab 1
2π

π
R

−π

|ΩxP |2

a+b
|PB|2

V

dω K = ‖PBf‖2

V + ‖f‖2

f ,

AB = W a 〈f,|ΩxP ||W |〉2
K−‖f‖2 +b‖(W−1)ΩxP‖2 K

f bξ〈f,|ΩxP |〉ξf<|ΩxP |+b‖ΩxP‖2
ξf>|ΩxP | K=a

b
1
2π

π
R

−π

max{f2 ,
f|ΩxP |

ξ }dω+[1− a
b ]‖f‖2

A, B aλ‖ΩxA‖2+b‖(AB−1)ΩxP‖2 K=exp

 

1
2π

π
R

−π

ln

„

|P B|2
λ +1

«

dω

!

B abλ 1
2π

π
R

−π

|ΩxP |2
aλ+b|PB|2 dω K=exp

 

1
2π

π
R

−π

ln

„

|P B|2
λ +1

«

dω

!

H abλ 1
2π

π
R

−π

|ΩxP |2
aλ+b|ΩxH|2 dω K=exp

 

1
2π

π
R

−π

ln

„

|ΩxH|2
λ +1

«

dω

!

- a
2π

R

|ΩxP |≥ a
√

α
2b

(α/2)|ΩxP |√
|ΩxP |2+ζα +|ΩxP |

dω+ b
2π

R

|ΩxP |< a
√

α
2b

|ΩxP |2dω K=exp

0

B

@

1
π

R

|ΩxP |≥ a
√

α
2b

ln

»
q

|PΩx|2
α +ζ + |PΩx|√

α

–

dω

1

C

A

whereζ , 1− a
b .



88 CHAPTER 3. WCMSE-OPTIMAL FILTERS FOR A GIVEN QUANTIZER SNR

0 0.5 1 1.5 2 2.5 3 3.5
−100

−80

−60

−40

−20

0

20

ω [rad/sample]

M
ag

ni
tu

de
 [d

B
]

Figure 3.3: Frequency response magnitudes for Ωx(z) (solid line), P (z) (dotted line) and

g(ω) =
˛̨
Ωx(e

jω)P (ejω)
˛̨

(dashed line). The underlying sampling frequency is 44.1 [KHz].

same figure (dashed line). For this choice ofg, and in view of (3.149), one could expect the norm of a

full whitening feedback filter to be very large. This is indeed the case:‖F0‖2 = 2.2 × 1011. Thus, the

sub-optimal feedback filter characterized by (3.145) requires the use of a scalar quantizer with at least18

bits in order to become feasible (see Constraint3.2).

In the simulations,Q was chosen to be a uniform mid-rise quantizer with quantization interval

∆ = 1. Several values ofγ were considered for the simulations, calculated asγ = 3
ρ2 22b, where

b ∈ {1, 2, . . . , 16} and whereρ , N∆
2σv

denotes theloading factor. Two different loading factors were

considered:4 and 6. The latter choice yields a slightly lowerγ than the usual loading factor of4.

However, this regime has the benefit of making overload errors smaller and more infrequent. As the

simulation results will show, for our choices ofΩx andP , this more conservative loading factor yields

lower overall distortion whenb takes values above6 bits per sample.

For eachb (and corresponding two values forγ, one for each loading factor), the filters of the con-

verter were designed according to the following:

1. The parameterαopt was calculated by numerically solving (3.142).

2. The optimal|1− F |, |A| and|B| were obtained via (3.140) and (3.22).
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3. These functions were then approximated11 with rational IIR transfer functionsA(z), B(z) (of

order7) andF (z) (of order15).

4. An appropriate value for the parameterκ in (3.41) was chosen viaκ2 = 2σ2
n

√
K
α , see (3.120),

assumingσ2
n = 1/12 (recall that∆ = 1 for all the simulations). This ensures thatσ2

v = γσ2
n.

For each combination ofb andρ, the resulting PRFQ converter was simulated utilizing two different

architectures.

1. Non OverloadingQ: This scheme is as depicted in Fig.3.1, with Q having (virtually) infinitely

many levels. Thus,|n(k)| ≤ ∆
2 for all k (neither clipping nor overload errors occur).

2. OverloadingQ and Clippedn: Here,Q hasN = 2b levels, which yields a scalar quantizer

with a finite input dynamic range[−N ∆
2 , N

∆
2 ]. As a consequence, any value|v(k)| > N ∆

2 would

overloadQ (if s =∞) or produce clipping error (ifs = V ). To avoid large limit-cycle oscillations,

this variant was simulated using clipping (i.e.,s = V ).

Each simulation with the non-overloading PRFQ comprised105 samples. For the overloading con-

verter, five105 samples simulations were performed for each combination ofρ andb.

3.11.2 Results

The results of the numerical optimization and the simulations are discussed next.

Comparison betweenD⋆ and the Rate-Distortion Function

The information theoretic lower bound (see [148]) for thefrequency weightedMSE (FWMSE) associated

with the given source{x(k)}k∈Z and filterP (z) is plotted in Fig.3.4 (solid line). This corresponds to

Shannon’s quadratic Distortion-Rate functionD(R) whenR = b. As the bit-rate is increased, the gap

betweenD⋆ and this absolute lower bound decreases to approx7.5 [dB] for ρ = 4 and11 [dB] for

ρ = 6, at b = 16. This difference can be attributed to the rate-distortion inefficiency of the uniform

scalar quantizer12. On the other hand, the larger performance gap observed at lower bit-rates can be

attributed to the perfect reconstruction constraint.13 Recall that, at low bit rates, the achievement of

11The optimization routines utilized are based upon the Matlab optimization toolbox and can be found at http://msderpich.no-

ip.org/research.
12From Shannon’s Rate-Distortion function for memoryless Gaussian sources, the maximum SNR for a bit-rateb is 22b . The

SNR (neglecting overload errors) for a uniform scalar quantizer with loading factorρ is given by 3
ρ2 22b. Thus, the theoretical

performance gaps forρ = 4 and6 are10 log10(3/16) = 7.3 [dB] and10 log10(3/36) = 10.8 [dB], respectively.
13The quadratic Gaussian rate-distortion function with the constraint that the end-to-end distortion is uncorrelated to the source

has recently been characterized by the author in [127]. The latter is also described in Section4.5.2of this thesis.
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Shannon’s rate-distortion function demands the suppression of relatively less significant bands of the

PSD of the input signal (see, e.g., [6], and [148]). This linear distortion, which a PRFQ cannot achieve,

is more severe at lower bit-rates. Thus, the performance gapincreases asb is reduced.

Non OverloadingQ

The FWCMSE of this form of converter is presented in four of the plots in Fig.3.4, with labels beginning

with “σ2
ǫ opt. PRFQ, Non Overloading”. These plots differ in the loading factor, denoted by “ρ”, and

in the meaning ofb in each case. For the plots whose labels do not have the ending“E.C.” (entropy

coding),b is simply the number utilized to generate the valueγ = 3
ρ2 22b for which the filters were

optimized. The plots whose labels end in “E.C.” correspond to the same simulations, but for each point

the value ofb is thescalar entropy of the quantized output of the converter. It can be seen in Fig.3.4

that the FWCMSE obtained for the non overloadingQ without entropy coding is remarkably close to the

theoretical valueD⋆ predicted by (3.143). More importantly, even for bit-rates as small asb = 2, each

observed ratioσ2
v/σ

2
n deviates from its nominal value ofγ by less than2%. (For the extreme situation

b = 1, the observedσ2
v was slightly lower than predicted, whileσ2

n was55% higher than1/12 due to

the highly non-uniform PDF of the resulting sequence{n(k)}k∈Z.) It can also be seen that the scalar

entropy of the quantized output of the PRFQ in these cases is very close to Shannon’sR(D) function for

a given distortion. This agrees with the observation that the output ofQ in an optimized PRFQ is white,

see Section3.10.2. The difference between these quantities is bigger for lower values ofb, for the same

reason given in the previous paragraph.

OverloadingQ

For the Overloading PRFQ using anρ of 4, the FWCMSE diminishes along with the correspondingD⋆

for b ∈ {1, . . . , 6}. However, the measured FWCMSE varies very little forb ≥ 7, staying several dB

higher thanD⋆ over that range of bit-rates. This performance degradationcan be attributed to clipping

errors. The fact that overload errors become noticeable only for high bit rates (many quantization levels)

might seem, at first, surprising. However, this phenomenon can be easily explained by noting that the

size of the tails of the PDF of{v(k)}k∈Z that fall outside the dynamic range ofQ remains approxi-

mately constant in relation toN∆ = 2b∆ for all b. (This is a direct consequence of the loading factor

rule.) In contrast, granular (non-overloading) quantization error is proportional to∆2, which is held

constant in the simulations. Therefore, the ratio between clipping and granular quantization errors grows

approximately as2b and clipping errors become dominant for sufficiently high bit-rates.

Because of the reduced occurrence (and magnitude) of clipping errors, the optimized PRFQ with
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Figure 3.4: Frequency weighted MSE for b ∈ {1, . . . , 16}.

overloadingQ andρ = 6 exhibits an FWCMSE smaller than that of its counterpart withρ = 4 for b ≥ 7.

Furthermore, this more conservative loading factor allowsthe converter to perform almost exactly as

predicted by our analytical expression forD⋆.14

Comparison with PCM

The theoretical FWCMSE of a PCM A/D converter, denoted byDPCM , can be found from (3.23) by

takinga = 1 and makingA(z) ≡ B(z) ≡ 1 andF ≡ 0, which givesDPCM = ‖Ωx‖2‖P‖2/γ. For the

chosen input PSD and frequency weighting filter, and calculating γ as 3
1622b, the value ofDPCM varies

with b as shown in Fig.3.4(dotted line). As seen in this figure, the gap betweenD⋆ andDPCM , for each

14There exist several results on the optimal balance between overload and granular error variances for stand-alone scalar quantiz-

ers (see, e.g., [94] and the references therein). However, for feedback quantizers the question seems to be open. An optimal trade-off

between overload and granular errors as the oversampling ratio tends to infinity is found in Theorem3.15, see Section3.12.3.
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value ofρ, gets smaller as the bit-rate decreases. It can also be seen in Fig 3.4that the optimized PRFQ

with overloading andρ = 6 exhibits an improvement of32 [dB] over PCM atb = 16. Equivalently, in

order to obtain the same FWCMSE as that of PCM at16 bits, the PRFQ converter withρ = 6 requires

less than12 bits. At lower bit-rates, the improvement of the optimal PRFQ over PCM is also significant.

For example, the overloading PRFQ withρ = 4 andb = 2 has a lower FWCMSE than the PCM converter

with b = 4, thus achieving a data rate compression of50% (see Fig.3.4).

3.12 Oversampled Feedback Quantization

3.12.1 Introduction

As already mentioned in Section1.1.4, there exist situations in which increasing the rate at which a

continuous time source is sampled is preferable (or less expensive) than improving the accuracy of the

quantization by increasing the number of quantization levels [66], [43, Section 1.1]. The use of over-

sampling along with scalar quantization is known to reduce reconstruction MSE for a given number of

quantization levels. Using the Linear Model (defined in Sec3.2.2), it has been shown in [56] that the

MSE of scalar feedback quantizers can be made to decay with the oversampling ratioλ as

MSE = O(λ−2(m+1)), whenλ→∞, (3.150)

wherem is the order of the feedback filter (see also recent work in [92]). Of course, if the number of

quantization levels in the scalar quantizer is kept fixed, and if memoryless entropy coding (or no entropy

coding at all) is utilized, then the operational bit-rate increases proportionally withλ. Thus, the decay

rate in (3.150) is rate-distortion inefficient, since a linear increase inthe bit-rate at a fixed sampling ratio

reduces MSE asO(2−2bλ), i.e., exponentially.

Recent work in [96] has shown that, for sources with bounded support,1-bit Σ∆ quantization can

attain an MSE which decays as

MSE = O(2−0.14λ), whenλ→∞. (3.151)

Such exponential decay rate is obtained by selecting a different feedback filter for each oversampling

ratio [96]. This result was obtained using a deterministic model of quantization errors, and, to the best of

the author’s knowledge, corresponds to the fastest decay ratio of the MSE with oversampling available in

the literature. Unfortunately, applying the method utilized in [96] for the cases in which the source has

unbounded support, or to multi-bit feedback quantizers, seems to be a formidable task.

In Section3.12.2we will show that, within the Linear Model, if the optimal infinite order filters

characterized in Section3.9 are used for each value ofλ, then one can achieve an exponential decay of
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D⋆ with oversampling ratio, providedγ is kept constant. For simplicity, we will restrict the analysis to

the case in which the weights of the WCMSE area = 1, b→∞, i.e., where the WCMSE reduces to the

MSE, and the reconstruction error is uncorrelated to the source. We will then linkγ to the operational

bit-rate of the scalar quantizer, and obtain asymptotic MSEdecay rates when the operational bit-rate is

kept constant. It will be shown below that, using an entropy coded subtractively dithered scalar quantizer

(SDUSQ), the MSE of an optimal PR feedback quantization decreases as

MSE = O(2−1.746λ), whenλ→∞, (3.152)

when the operational bit-rate is kept fixed, provided sufficient quantization levels to avoid clipping/overload

are employed.

This result is then extended, in Section3.12.3, to the cases in which the FQ uses clipping and a

subtractively dithered scalar quantizer withN levels. With this setting, we will demonstrate that, by

adjusting the loading factorρ to each oversampling ratio, the MSE can be made to decay as

MSE = O(e−c0λ
1/3

), whenλ→∞, (3.153)

wherec0 , [0.5(N − 1)]2/3. This asymptotic behaviour of the MSE holds for sources withbounded or

unbounded support, provided condition (3.1) on page45 is satisfied.

3.12.2 The Oversampled Case Without Clipping/Overload

If the input sequence{x(k)}k∈Z is obtained by sampling a band-limited analog signal, oversampling

would causeg (defined in (3.141)) to vary withλ. To capture this effect, we replaceg by the family of

functionsgλ, defined as

gλ(ω) ,





√
λ g1(λω) , if |ω| < ωc,

0 , if ωc ≤ |ω| ≤ π.
(3.154)

In (3.154), g1 denotes the square root of the PSD of the frequency weighted input without oversampling,

andωc , π
λ . Notice that‖gλ‖2, that is, the total power ofgλ (in units of variance per sample), remains

constant for allλ ≥ 1. This ensures a uniform comparison basis for the distortionfigures.

When considering the asymptotic performance of oversampled quantization asλ → ∞, the validity

of Assumption3.2on page49 needs to be reconsidered. To see this, notice that if the number of quan-

tization levels is insufficient to avoid clipping/overloaderrors, and if dither and clipping are used with a

fixed loading factor, then there always exists a certain finite value ofλ beyond which Assumption3.2 is

violated. This arises from the fact that, for any fixed loading factor, the effect of clipping errors in the

output does not decay withλ, thus becoming the dominant component in the FWMSE for sufficiently
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high oversampling ratios. Further reduction of the FWMSE would then require one to balance clipping

and granular quantization errors by increasing the loadingfactor. If the number of quantization levels

is fixed, this would necessarily reduce the value ofγ, clearly increasing the component of the FWMSE

due to granular quantization errors. Nevertheless, if clipping and dither are used (withs = V ), then

the Linear Model and Theorem3.12are exact in describing the FWMSE due togranular quantization

errors. Furthermore, as explained in Remark3.1 below, for subtractively dithered quantization with in-

finitely many quantization levels, the entropy of the quantized output conditioned to the dither can be

kept constant (and finite) asλ→∞ while having the reconstruction MSE that decays exponentially.

We can now make explicit the dependence ofD⋆ onγ andλ by writing

D⋆(K,λ) , min
f∈C2∩C1
g=gλ

D(f) = min
f∈C2∩C1

〈f, gλ〉2
K − ‖f‖2 , (3.155)

whereK, defined in (3.22), corresponds to theoutput-SNR ofQ.

Interestingly, it is possible to establish a precise “exchange” formula forK andλ. Indeed, in terms

of minimal achievable distortion, the effect of increasingoversampling is equivalent to an exponential

increase in the output-SNR ofQ. This is shown in the next theorem:

Theorem 3.11. Under the Linear Model described in Section3.2.2, for any functiong1(ω), and for any

K > 1, λ ≥ 1, the minimum achievable FWMSE satisfies:

D⋆(K,λ) = D⋆(Kλ, 1). (3.156)

N

If we assume thatγ depends exponentially on the number of bits per sample, thenTheorem3.11

suggests an FWMSE that decays exponentially withλ, provided the Linear Model holds and that optimal

filtersA(z),B(z) andF (z) (characterized by (3.140) and (3.22)) are employed for eachλ. The following

simple example illustrates this idea:

Example(Flat Weighted Input Spectrum) Consider an input signal{x(k)}k∈Z and a weighting filter

P (z) such that|ΩxP | is constant∀ω ∈ [−π, π], without oversampling. For this setup, the optimalF (z)

for our model of PRFQ isF (z) ≡ 0 (f(ejω) ≡ 1), i.e., a PCM converter. From(3.143), the minimum

frequency weighted MSE without oversampling (i.e., withλ = 1) under these conditions becomes

D⋆(K, 1) =
σ2
xP

γ
=

σ2
xP

K − 1
,

whereσ2
xp , ‖ΩxP‖2. To analyze oversampling behaviour ofD⋆ in this case, we apply Theorem3.11

to the above expression. This gives thatD⋆(K,λ) =
σ2

xP

Kλ−1 , and, thus,

σ2
xPK

−λ ≤ D⋆(K,λ) ≤
(

σ2
xP

1−K−1

)
K−λ (3.157)
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for all λ ≥ 1. Note that, to achieve(3.157), F (z) needs to be synthesized according to(3.140a), (3.142)

and (3.22). Therefore, for this example, the MSE of an optimized PRFQ with fixedγ exhibits an expo-

nential decay with the oversampling ratio (since, by definition,K > 1).

If we further assumeK to depend on the number of bits per sampleb asK = 3
1622b + 1 (which

would correspond toQ being a uniform quantizer with many levels and operating with a loading factor

of 4), then(3.157) becomes

σ2
xP 2−[log2( 3

16+2−2b)+2b]λ ≤

D⋆(K,λ) <
(

σ2
xP

1−K−1

)
2−[log2(

3
16 +2−2b)+2b]λ.

(3.158)

The termlog2(
3
16 +2−2b) in (3.158) is negative for allb ≥ 1. This implies that the decrease ofD⋆ withλ,

although exponential, is slower than2−2bλ. Thus, the use of oversampling in this case is rate-distortion

inefficient. In particular, takingb = 1, and supposing that Assumptions3.3 and 3.4 hold, we obtain

from (3.158) thatD⋆(K,λ) is lower and upper bounded by terms proportional to2−0.807λ. For loading

factor values of6, 10 and20, the exponent in the latter expression changes to−0.41λ, −0.1635λ and

−0.0426λ, respectively. N

The next theorem shows that the exponential decay of the FWMSE obtained in the example above

can be extended to arbitrary (band-limited) input signals and frequency weighting criteria.

Theorem 3.12. For anyK > 1 and functiong1(ω) satisfying Assumption3.1, the following holds:

D⋆(K,λ) ≤ K2αopt(K, 1)

4(K − 1)
K−λ, ∀K > 1, ∀λ ≥ 1, (3.159)

whereαopt(K, 1) denotes the optimalα for λ = 1. N

Thus, under the Linear Model, we have that the FWMSE of an optimized PRFQ decays exponentially

with λ.

Remark 3.1. As already mentioned in Section3.2.2, if x is bounded and a sufficiently large number of

quantization levels to avoid overload is used together withdither, then the Linear Model is exact. Never-

theless, there is no guarantee that the number of quantization levels necessary to avoid overload remains

constant asλ increases. Thus, if that number increases withλ, then keepingγ constant may require

increasing the number of quantization levels in the quantizer. Nevertheless, if a subtractively dithered

scalar quantizer is used, then the entropy of its quantized output conditioned to the dither, denoted by

RQ, depends only on the PDF ofv(k) and on the quantization interval∆, see Section2.4.2. RQ corre-

sponds to the asymptotically achievable rate that can be obtained by entropy coding long sequences of

quantized values. Thus, when using SDUSQ with sufficiently (possibly infinitely) many levels andfixed

rate, one can substitute(2.60) into (3.159), which yieldsD⋆(K,λ) = O(2−1.746λ). N
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An extension of these results to include the effect of clipping errors, which are unavoidable if the

source has unbounded support and the quantizer has a finite number of quantization levels, is the main

result of the next section.

3.12.3 The Oversampled Case With Clipping

In this section we derive an upper bound on the total frequency-weighted MSE of a perfect reconstruction

FQ, including clipping errors. To do so, we assume that the scalar quantizer in Fig.3.1uses subtractive

dither, uniformly distributed over[−∆
2 ,

∆
2 ]. Choosing the saturation threshold of the clipper ass = N ∆

2 ,

no overload occurs (see Section3.2.1), and thus

σ2
n =

∆2

12
(3.160)

Denote theloading factorat whichQ operates by

ρ ,
σv

N∆/2
. (3.161)

Substitution of (3.160) and (3.161) into (3.15) yields

γ =
σ2

v

σ2
n

=
N2∆2

4ρ2∆2/12
=

3

ρ2
N2 (3.162)

In order to keep clipping errors infrequent and small, it is required to chooseρ large enough.

In the FQ shown in Fig.3.1, clipping errors are not injected into the feedback loop. Instead, they

appear in the frequency weighted errorǫ filtered byB(z) andP (z), as the process

ϑ̃(k) , P (z)B(z)ϑ(k), ∀k ∈ Z. (3.163)

Unless the source{x(k)} is a stationary process, one cannot guarantee that the samples of the clipping

error will form a stationary, or even a w.s.s. random process. In order to quantify its contribution to

the FWMSE for non-necessarily stationary sources, we definetheaverage frequency weighted power of

clipping errors in the outputas

σ2
εϑ

, lim
ℓ→∞

1

2ℓ+ 1

ℓ∑

k=−ℓ
E
[
ϑ̃(k)2

]
(3.164)

The next lemma provides a fundamental result that will serveto derive an upper bound for clipping

errors.

Lemma 3.13. Let ς1, ς2, . . . be independent random variables with momentsµin , E [ςni ], and letσ2 ,
∑

i µ
i
2 <∞. If there exists a constantH such that

∣∣µin
∣∣ ≤ 1

2
(n!)Hn−2

∣∣µi2
∣∣ , ∀n ≥ 2, ∀i ∈ Z+, (3.165)
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then

Pr
{∑

i
ςi > uσ

}
≤ e−

σ
2H u, ∀u ≥ σ/(2H). (3.166)

N

Proof. From one of Bernstein’s inequalities, given in [149, Sec. 5.5], we have that

Pr
{∑

i
ςi > uσ

}
≤ e−2(1−c)u2

, ∀u > 0 and∀c ∈ (0, 1) such thatu ≤ cσ

2(1− c)H . (3.167)

For everyu > 0, the tightest bound for the first inequality in (3.167) is obtained withc = u
σ

2H +u .

Substituting this into (3.167) yieldsPr{∑i ςi > uσ} ≤ e−2u2/(1+ 2H
σ u). The latter, together with the

fact that2u/(1 + 2H
σ u) ≥ σ

2H , ∀u ≥ σ/(2H) leads directly to (3.166), completing the proof.

The following theorem provides an upper bound forσ2
εϑ

applicable to situations in which the source

has unbounded support.

Theorem 3.14. Suppose there exists a scalarĝ < ∞ such thatg1(ω) ≤ ĝ, ∀ω ∈ [−π, π], see(3.154).

Assume that the innovations of the process{x(k)} is a sequence of zero-mean, independent random

variables{ξ(k)} having a symmetric PDF and moments which satisfy(3.165) with H = Hξ, for some

constantHξ. Then, in an optimal PRFQ with clipping and subtractive dither,

σ2
εϑ
≤ 16

ĝ2

ν2
λ e−νρ, ∀λ ≥ 1, (3.168)

whereλ denotes the oversampling ratio,ρ is the loading factor defined in(3.161), and where

ν ,
1

2
min

{(
γλ

γ + 1

)1/2
σξ
Hξ

,
σn

Hn

}
. (3.169)

N

Proof. We have from (3.164) that

σ2
ǫϑ
≤ B2

maxσ
2
ϑ, (3.170)

where

B2
max , max

ω∈[−π,π]

∣∣P (ejω)B(ejω)
∣∣2 (3.171)

and whereσ2
ϑ is the time-averaged power of clipping errors, given by

σ2
ϑ , lim

ℓ→∞

1

2ℓ+ 1

ℓ∑

k=−ℓ
E
[
ϑ(k)2

]
. (3.172)

We will first upper boundBmax and thenσ2
ϑ.
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BoundingB2
max From (3.41b), we have:

∣∣P (ejω)B(ejω)
∣∣2 =

gλ(ω)

κ2f(ejω)
, ∀ω ∈ [−π, π]. (3.173)

From (3.120),

κ2 = 2σ2
n

(
γ + 1

α(K,λ)

)1/2

. (3.174)

Substitution of the latter into (3.140a) yields

κ2f(ejω) = 2σ2
n

γ + 1

α(K,λ)

(√
gλ(ω)2 + α(K,λ) − gλ(ω)

)
= 2σ2

n

γ + 1√
gλ(ω)2 + α(K,λ) + gλ(ω)

.

Noting thatα(K,λ) = λα(Kλ, 1) (see the proof of Theorem 5 in [118]), we obtain

κ2f(ejω) = 2σ2
n

γ + 1√
λg1(λω)2 + λα(Kλ, 1) + λg1(λω)

=
2σ2

n(γ + 1)√
λ

· 1√
g1(λω)2 + α(Kλ, 1) + g1(λω)

.

Substituting this last equation and (3.154) into (3.173) we obtain

∣∣P (ejω)B(ejω)
∣∣2 =

λ

2σ2
n(γ + 1)

(√
g1(λω)2 + α(Kλ, 1) + g1(λω)

)
g1(λω), ∀ω ∈ [−π, π].

(3.175)

Sinceα(Kλ, 1) decreases monotonically with increasingλ, the following upper bound can be obtained

from (3.175):

∣∣P (ejω)B(ejω)
∣∣2 ≤ λ

2σ2
n(γ + 1)

(√
ĝ2 + α(K, 1) + ĝ

)
ĝ, ∀ω ∈ [−π, π]. (3.176)

In order to get rid ofα(K, 1) in the above expression, we will use an upper bound forα(K, 1) instead of

the latter in the right hand side of (3.176). SinceK = γ + 1, it follows directly from (3.142) that

α(K, 1) ≤ 4ĝ2 γ + 1

γ2
, (3.177)

and thus

(√
ĝ2 + α(K, 1) + ĝ

)
ĝ ≤

(√
1 + 4

γ + 1

γ2
+ 1

)
ĝ2 = 2ĝ2 γ + 1

γ
.

Substitution of the latter into (3.176) yields

∣∣P (ejω)B(ejω)
∣∣2 ≤ B2

max ≤
ĝ2

σ2
nγ
λ, ∀ω ∈ [−π, π]. (3.178)
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Boundingσ2
ϑ For everyk ∈ Z, v(k) is a linear combination of the i.i.d. random variables{n(i)}k−1

i=−∞,

and the independent random variables{ξ(i)}ki=−∞. Notice also that, due to the use of subtractive dither,

the random variablesn(i) andξ(k) are independent for alli, k ∈ Z. More explicitly, at any instantk, we

can write

r(k) =

∞∑

i=0

cξ(i)ξ(k − i); y(k) =

∞∑

i=1

cn(i) n(k − i); v(k) =

∞∑

i=0

ς(i), (3.179)

where the sequence

ς(i) ,




cξ(

i
2 )ξ(k − i

2 ) , i even

cn(
i+1
2 ) n(k − i+1

2 ) , i odd,
(3.180)

is made of independent random variables. We will upper boundσ2
ϑ by applying Lemma3.13to

∑∞
i=0 ς(i).

For this purpose we need to find a value forH , namelyHς , for which the random variables{ςi}∞i=0 sat-

isfy (3.165). This can be done by upper bounding the coefficientscξ andcn. From (3.179) and Fig.3.1

we have

σ2
ξ

∞∑

i=0

cξ(i)
2 = σ2

r =
1

2π

π∫

−π

∣∣A(ejω)
∣∣2 g(ω)2dω. (3.181)

From (3.175), and sinceA(ejω) = B(ejω)∼1, the squared frequency response magnitude of the pre-filter

A(z) can be upper bounded as
∣∣A(ejω)

∣∣2 ≤ σ2
n(γ + 1)/(g(ω)2λ), which, when substituted into the right

hand side of (3.181), yields
∑k

i=−∞ cξ(i)
2σ2
ξ ≤

σ2
n(γ+1)
λ = σ2

v
γ+1
γλ . The latter immediately gives the

upper bound

cξ(i)
2 ≤ γ + 1

σ2
ξγλ

σ2
v, ∀i ∈ Z+

0 . (3.182)

Similarly, from (3.179), and sinceσ2
n ≤ σ2

v, we have that
∑k−1

i=−∞ cn(i)2σ2
n ≤ σ2

v, which leads directly

to

cn(i)
2 ≤ σ2

v

σ2
n

, ∀i ∈ Z+. (3.183)

Since, for any random variablex and scalarc,Hc x = cHx, it follows from (3.180), (3.182) and (3.183)

thatHς can be upper bounded as

Hς ≤ Ĥς , max{max
i
{cξ(i)}Hξ,max

i
{cn(i)}Hn} ≤ max

{(
γ + 1

γλ

)1/2
Hξ

σξ
,
Hn

σn

}
σv (3.184)

SubstitutingH byHς into (3.166) we obtain

Pr{v > uσv} ≤ e−
σv
2Hς

u ≤ e
− σv

2Ĥς
u
, ∀u ≥ σv/(2Hς). (3.185)
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From (3.185) we have that the variance ofϑ cannot be larger than that obtained ifv were a random

variable with cumulative PDF given by

Fvmax(x) ,





e
1

2Ĥς
x

, if x < −2Ĥς ln(2),

1/2 , if |x| ≤ 2Ĥς ln(2),

1− e
− 1

2Ĥς
x

, if x > 2Ĥς ln(2).

(3.186)

Hence, forρ > 2Ĥς

σv
ln(2), the variance of overload errors can be upper bounded as

σ2
ϑ ≤

∫ ∞

ρσv

(t− ρσv)
2
[ d
dt
Fvmax(t)

]
dt =

2

2Ĥς

∫ ∞

ρσv

(t2 − 2ρσvt+ ρ2σ2
v) e

− 1

2Ĥς
t
dt (3.187)

= 16Ĥ2
ς e−

σv
2Hς

ρ = 16Ĥ2 e−νρ, (3.188)

since σv

2Ĥς
= 1

2 min

{(
γλ
γ+1

)1/2
σξ

Hξ
, σn

Hn

}
= ν, see (3.169). Substituting (3.188) and (3.178) into (3.170),

we obtain

σ2
ǫϑ ≤ 16

ĝ2

σ2
nγ
λĤ2

ς e−νρ = 16
ĝ2

ν2
λ e−νρ, ∀λ ≥ 1, (3.189)

where (3.15) and (3.169) have been used. This completes the proof.

Thus, we have obtained an upper bound on the MSE due to clipping errors that grows linearly withλ

and decays exponentially withρ (provided the productγλ does not tend to zero asλ→∞, see (3.169)).

It is worth noting that the above bound is not tight, which stems from the use of the following

inequalities: from (3.166) (Bernstein’s inequality); from inequality (3.170) (which assumes that all the

power of clipping errors coincides with the peak of
∣∣P (ejω)B(ejω)

∣∣); from inequality (3.178) (which

only has the effect of introducing a constant scale factor);and from (3.183), (3.182), and (3.184) (which

can be expected to be very loose inequalities).

Remark 3.2. If one assumes that the average power of clipping errorsσ2
ϑ is evenly distributed over

[−π, π], then(3.170) would change to

σ2
ǫϑ

= σ2
ϑ

1

2π

π∫

−π

∣∣P (ejω)B(ejω)
∣∣2dω. (3.190)

From (3.175), and becauseg(ω) is zero for|ω| > π, the integral in(3.190) converges, asλ→∞, to the

value1/(2σ2
n(γ + 1)), which is independent ofλ. This, when substituted into(3.189), would eliminate

theλ factor that multiplies the exponential in(3.168), yielding

σ2
ǫϑ
≤ 16

ν
e−νρ . (3.191)

N
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Now we can upper bound the total MSE:

Theorem 3.15. Suppose there exists a scalarĝ < ∞ such thatg1(ω) ≤ ĝ, ∀ω ∈ [−π, π], see(3.154).

Assume that the innovations of the process{x(k)} is a sequence of zero-mean independent random

variables{ξ(k)} having a symmetric PDF and moments which satisfy(3.165) with H = Hξ, for some

constantHξ. If the loading factor in an optimal PRFQ with anN -level uniform quantizer using clipping

and subtractive dither varies with the oversampling ratioλ as

ρ = 4−1/3
√

3 (N − 1)2/3λ1/3, (3.192)

thenσ2
ǫ , the MSE including overload errors, satisfies

σ2
ǫ = O(e−c0λ

1/3

), asλ→∞, (3.193)

where the constant

c0 , [0.5(N − 1)]2/3. (3.194)

N

Proof. The total frequency weighted error is

ǫ = ǫn + ǫϑ, (3.195)

where

ǫn(k) , (1− F (z))B(z)n(k) (3.196)

is the term inǫ due to granular errors inQ and whereǫϑ is the part ofǫ due to clipping errors. We then

have that

σ2
ǫ = E

[
ǫ2
]

= E
[
(ǫn + ǫϑ)

2
]
≤ E

[
2
(
ǫ2n + ǫ2ϑ

)]
= 2(σ2

ǫn + σ2
ǫϑ

). (3.197)

By substituting (3.177) into (3.159), the upper bound to the FWMSE due to granular quantization errors

in (3.159) becomes

σ2
ǫn ≤ ĝ2

(
γ + 1

γ

)3

e− ln(γ+1)λ (3.198)

Upon substituting (3.189) and (3.168) in (3.197), we obtain the following upper bound for the total error

variance:

σ2
ǫ ≤ 2ĝ2

(
γ + 1

γ

)3

e− ln(γ+1)λ+32
ĝ2

ν2
λ e−νρ . (3.199)
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The above upper bound forσǫ does not tend to zero with increasingλ unless one makes the loading

factorρ grow withλ fast enough. From (3.162) and since the use of subtractively dithered uniform scalar

quantization reduces the effective number of quantizationlevels by1, we have thatγ = η/ρ2, where

η , 3(N − 1)2. Thus, the term due to clipping errors in (3.199) can be reduced only at the expense of

havingQ operate at a lower SNR. This, in turn, makes the term due to granular errors decay more slowly

with increasingλ.

For example, if one makes the loading factorρ grow withλ asρ = ̟λp, wherep > 0 anda > 0 are

constants to be chosen, then (3.199) becomes

σ2
ǫ ≤ 2ĝ2

(
1 +

̟2λ2p

η

)3

e− ln( η

̟2 λ
−2p+1)λ +32

ĝ2

ν2
λ e−ν̟λ

p

. (3.200)

It can be seen in the above expression that a large value ofp would reduce the decay of the granular error

term and increase that of the clipping error term, asλ grows. Thus, the optimal decay rate whenλ→∞
is achieved by choosingp so as to make both terms decay at the same asymptotic rate. This is achieved

if and only if p anda are chosen so that

c , lim
λ→∞

ln
(

η
̟2λ2p + 1

)
λ− 3 ln

(
1 + ̟2λ2p

η

)
− ln 2

ν̟λp − ln(λ) − 2 ln(4ĝ/ν)− ln 2
(3.201)

equals1. Before evaluating the above limit, note that from (3.169) we obtain

ν = ν̆ , 4
√

3 , ∀λ ≥ 2
√

2

(
γ + 1

γ

)
H2
ξ

σ2
ξ

, (3.202)

sincen, being a random variable uniformly distributed over[−∆
2 ,

∆
2 ], has standard deviationσn = ∆

2
√

3

and satisfies (3.165) with Hn = ∆
8 . Applying l’Hôpital’s rule to (3.201) and substitutingν by ν̆,

c = lim
λ→∞

[
ln
(
η
̟2 λ

−2p + 1
)
[λ− 3]− 6p ln (λ) + 3 ln

(
η
̟2

)

ν̟̆λp − ln(λ)− ln(16/3)

]

= lim
λ→∞

[
ln
(
η
̟2 λ

−2p + 1
)
− 2ηp

η+̟2λ2p [1− 3λ−1]− 6pλ−1

ν̟̆pλp−1 − λ−1

]

= lim
λ→∞




−2ηpλ−1

η+̟2λ2p − 6ηpλ−2(η+̟2λ2p)−4̟2ηp2[1−3λ−1]λ2p−1

(η+̟2λ2p)2 + 6pλ−2

ν̟̆p(p− 1)λp−2 + λ−2




= lim
λ→∞




−2ηpλ
η+̟2λ2p − 6ηp(η+̟2λ2p)−4̟2ηp2[1−3λ−1]λ2p+1

(η+̟2λ2p)2 + 6p

ν̟̆p(p− 1)λp + 1




= lim
λ→∞

[−2ηpλ(η +̟2λ2p)− 6ηp(η +̟2λ2p) + 4̟2ηp2[1− 3λ−1]λ2p+1 + 6p(η +̟2λ2p)2

(η2 +̟4λ4p + 2̟2ηλ2p)(ν̟̆p(p− 1)λp + 1)

]
.

(3.203)
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By comparing the powers ofλ in the numerator and denominator of the right-hand side of (3.203), it

is clear from thatc is either0 or ∞ unlessp = 1/3. With this choice, we getc = η
ν̟̆3 , and thus

c = 1 ⇐⇒ ̟ =
(
η
ν̆

)1/3
. Therefore, the right-hand side of (3.201) equals1 if and only if

p = 1/3,

̟ =
(η
ν̆

)1/3

.

Substituting these values into (3.200) we obtain

σ2
ε ≤ e−h1(λ) + e−h2(λ), (3.204)

where

h1(λ) , ln
[
c1λ

−2/3 + 1
]
λ− 3 ln

[
1 + c−1

1 λ2/3
]
− ln(2ĝ2),

h2(λ) , c1λ
1/3 − ln(λ) − ln(32ĝ2ν−2),

(3.205)

∀λ > 1, and where

c1 , η1/3ν̆2/3 = (3/16)1/3η1/3 = (3/16)1/3[3(N − 1)2]1/3 = [(3/4)(N − 1)]2/3. (3.206)

From (3.205) and (3.206), it is straightforward to show that

lim
λ→∞

h1(λ)

λ1/3
= lim

λ→∞

h2(λ)

λ1/3
= c1. (3.207)

Using (3.207) it is found that, for any constantc < c1, the following holds

lim
λ→∞

(
e−h1(λ)

e−cλ1/3

) 1

cλ1/3

= lim
λ→∞

e
1− h1(λ)

cλ1/3 = e1− c1
c < 1. (3.208)

This means that for everyε > 0, there exists a bounded and positiveΛ1 = Λ1(ε) such that, ifλ > Λ1,

then
(

e−h1(λ)

e−cλ1/3

) 1

cλ1/3 ≤ e1− c1
c +ε. Choosingε < 1− e1− c1

c , we have that

(
e−h1(λ)

e−cλ1/3

) 1

cλ1/3

≤ e1− c1
c +ε < 1, ∀λ > Λ1(ε) ⇐⇒ e−h1(λ)

e−cλ1/3
< 1, ∀λ > Λ1(ε). (3.209)

A similar analysis leads to the existence of a bounded and positive Λ2(ε) such that

e−h2(λ)

e−cλ1/3
< 1, ∀λ > Λ2(ε). (3.210)

Sincec0 in (3.194) satisfiesc0 < c1, (3.209) and (3.210) demonstrate (3.193). This completes the

proof.
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Remark 3.3. The requirement that the innovation process of{x(k)} is made of independent samples is

necessary in Theorem3.15in order to obtain(3.184) in Theorem3.14. This condition can be omitted if

the pre-filter is simply a scalar gain and if we assume, instead, that the samples of{x(k)} satisfy(3.165)

for some boundedH . Setting the pre-filter as a scalar gain would yield a non optimal PRFQ (unless,

of course, the source is white). Nevertheless, one would obtain thatσ2
ϑ also grows linearly withλ and

decays exponentially withρ. As a consequence, Theorem3.15 can be extended in a similar fashion

without requiring the source to have an innovations processwith independent samples.

Remark 3.4. From Remark3.2, if one makes the assumption that the average spectral powerof ϑ is

evenly distributed over[−π, π], the effect would be to eliminate the+1 term on the right end of the

denominator of(3.203). Following the proof of Theorem3.15, it is easy to verify that thiswould have no

effecton (3.193).

3.13 Summary

In this chapter we have characterized the filters around a scalar quantizer with given SNR that minimize

the frequency weighted reconstruction WCMSE. The associated optimal performance (SNR-distortion)

trade-off for this class of ED pairs has been also established. It has been shown that the frequency

weighted MSE of optimal perfect reconstruction feedback quantizers decreases exponentially with the

oversampling ratio, if the quantizer SNR is kept constant. In addition, a lower bound to this decay ratio

has been found when the number of levels in the quantizer is finite and fixed. This bound takes into

account the effect of clipping errors, and holds for sourceswith unbounded support.

3.14 Appendix

In this appendix we give some technical results which were used throughout this chapter.

Lemma 3.16(WCMSE Wiener Filter). Let Sn(ejω) =
∣∣Ωn(ejω)

∣∣2 and Sx =
∣∣Ωx(e

jω)
∣∣2 be power

spectral densities. Leta, b > 0 be given constants. Then, the frequency response of the LTI filter W (z)

that minimizes

Da,b(x, y) = a‖WΩnP‖2 + b‖(W − 1)ΩxP‖2 (3.211)

satisfies

W (ejω) =
bSx(e

jω)

aSn(ejω) + bSx(ejω)
, a.e. on[−π, π] \ NP , (3.212)



3.14. APPENDIX 105

whereNP , {w ∈ [−π, π] : P (ejω) = 0}. N

Proof. It is clear from (3.211) that in order to minimizeDa,b, W (ejω) must be real, non-negative and

symmetric. If this is the case, we have that

Da,b(x, y)

=

∫ ∣∣P (ejω)
∣∣2 (aW (ejω)2Ωn(ejω)2 + bW (ejω)2Ωx(e

jω)2 − 2bW (ejω)Ωx(e
jω)2 + bΩx(e

jω)2
)
dω

=

∫ ∣∣P (ejω)
∣∣2 ((aΩ2

n + bΩ2
x

)
W 2 − 2bWΩ2

x + bΩ2
x

)
dω

=

∫ ∣∣P (ejω)
∣∣2


[
√
aΩ2

n + bΩ2
x W −

bΩ2
x√

aΩ2
n + bΩ2

x

]2

+ bΩ2
xdω −

[
bΩ2

x√
aΩ2

n + bΩ2
x

]2

 dω

=
1

2π

π∫

−π

∣∣P (ejω)
∣∣2 T (ejω)

[
W (ejω)− bΩx(e

jω)2

T (ejω)2

]
+
∣∣P (ejω)

∣∣2 abΩx(e
jω)2Ωn(ejω)2

T (ejω)2
dω

=

∥∥∥∥P
(
W − bΩ2

x

T 2

)
T

∥∥∥∥
2

+

∥∥∥∥∥P
√
abΩxΩn

T

∥∥∥∥∥

2

(3.213)

whereT (ejω) ,
√
aΩn(ejω)2 + bΩx(ejω)2 . From the last line of (3.213), we conclude that the filter

W (z) that minimizesDa,b(x, y) has the frequency response given in (3.212).

As one could expect from (3.211), the filter described by (3.212) would be the standard non-

causal Wiener filter if the source and the noise had power spectral densitiesa
∣∣P (ejω)

∣∣2 Sx(e
jω) and

b
∣∣P (ejω)

∣∣2 Sn(e
jω), respectively.

Theorem 3.17(Simplified from Theorem 1 on p. 217 of [128]). LetX be a linear vector space andS a

convex subset ofX . LetF be a real-valued convex functional onS andG1,G2, . . . ,GN convex mappings

fromS into R. Assume the existence of a pointf1 ∈ S such thatGi(f1) < 0, for i = 1, 2, . . . , N .

Let

µ0 , inf F (f) subject tof ∈ S,Gi(f) ≤ 0, i = 1, 2, . . . , N (3.214)

and assumeµ0 is finite. Then there exists a vectorλ ∈ RN satisfying

λi ≥ 0, ∀i ∈ {1, 2, . . . , N} (3.215)

and such that

µ0 = inf
f∈S

{
F (f) +

∑N

i=1
λiGi(f)

}
, (3.216)
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Furthermore, if the infimum is achieved in(3.214) byf⋆ ∈ S, Gi(f
⋆) ≤ 0, ∀i ∈ {1, 2, . . . , N}, thenf⋆

also achieves the infimum in(3.216) and

Gi(f
⋆)λi = 0, , ∀i ∈ {1, 2, . . . , N} (3.217)

Proof. Same as in the proof of [128, Theorem 1, in p. 217].

Theorem 3.18. 15 If φ, ψ : [a, b]→ R are similarly functionally related, then

[b − a]
∫ b

a

φ(x)ψ(x)dx ≥
∫ b

a

φ(x)dx

∫ b

a

ψ(x)dx. (3.218)

If φ andψ are oppositely functionally related, then the inequality in (3.218) is reversed. In either case,

equality is achieved if and only ifψ (and thereforeφ) is almost constant. N

Proof. We will examine the difference between the right and left hand side in (3.218). We obtain

∫ b

a

φ(x)ψ(x)dx − ψ
∫ b

a

φ(x)dx =

∫ b

a

φ(x)
[
ψ(x) − ψ

]
dx,

whereψ , 1
b−a

∫ b
a
ψ(x)dx. Note that we have divided both sides byb− a. Supposeφ ↑↑ ψ. (The proof

for φ ↑↓ ψ proceeds in a similar way.) Then there exists a monotonically increasing functionG(·) such

thatφ = G(ψ), and a valueφ0 such thatφ(x) > φ0 ⇐⇒ ψ(x) > ψ andφ(x) < φ0 ⇐⇒ ψ(x) < ψ.

It then follows that ∫ b

a

φ(x)
[
ψ(x) − ψ

]
dx ≥

∫ b

a

φ0

[
ψ(x) − ψ

]
dx = 0,

with equality if and only if

∫

ψ>ψ

[ψ(x) − ψ ]dx = 0 =

∫

ψ<ψ

[ψ(x)− ψ ]dx,

i.e., if and only ifψ (and thereforeφ as well) is almost constant.

15This theorem is related to the variant of Tchebyshev’s Integral Inequality given in [150, Theorem 236]. It departs from the

latter in that the integrands must be functionally dependent, which allows us to state necessary and sufficient conditions for equality.



Chapter 4

The WCMSE-Rate-Distortion

Function

It can scarcely be denied that the supreme goal of all theory is to make
the irreducible basic elements as simple and as few as possible without having

to surrender the adequate representation of a single datum of experience.

Albert Einstein

There is nothing more practical than a good theory.

Attributed to Kurt Lewin, German Psychologist.

4.1 Introduction

In the previous chapter we analyzed the optimal bit-rate performance attainable with a general feedback

scalar quantization scheme, using WCMSE as the distortion metric. However, it is not clear from those

results whether the achieved performance is optimal in an absolute sense, that is, when compared to the

best performance achievable byany possible source coding scheme. A function that characterizes the

minimum achievable bit-rate for a given distortion metric is, by definition, a rate-distortion function [6].

Here, we first define the information-theoretic rate-distortion function for WCMSE as the distor-

tion metric, denoted as WCMSE-RDF or by and by the functionRa,b(D). The information-theoretic

WCMSE-RDF is then characterized for Gaussian sources, which serves, initially, as a lower bound to

the rate attainable by any ED pair under the constraint that the WCMSE is smaller than some value

D > 0. The cases of Gaussian scalar and vector sources are discussed in sections4.3, 4.4 respectively.

The information-theoretic WCMSE-RDF for Gaussian stationary scalar processes and vector processes

107
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is characterized in sections4.5and4.6, respectively. A proof of achievability of these bounds is provided

in Section4.8, which implies that the information-theoretic WCMSE rate-distortion function actually

coincides with the WCMSE rate-distortion function. The achievability result holds for Gaussian scalar

and vector processes, as well as for infinite ensembles of Gaussian scalar random variables.

The special cases in which the WCMSE has weightsa = b = 1 anda = 1, b = ∞ are briefly

discussed in Section4.5.2. The latter case characterizes thequadratic Gaussian rate-distortion function

for source-uncorrelated distortions, denoted byR⊥(D) and recently introduced by the author and col-

leagues in [127]. An image processing example which provides a tangible illustration of the meaning

and potential applicability of the WCMSE-RDF is presented in Section4.7. In Section4.9, this rate-

distortion function is extended and characterized for cases in which there exists linear, time-invariant

(LTI) feedback between reconstruction and source.

We begin by stating some preliminary results.

4.2 Preliminaries

4.2.1 The WCMSE is Not Linear in the PDF of Source and Reconstruction

Perhaps surprisingly, the WCMSE (defined in Section1.3.1) differs from the standard MSE in an essen-

tial way. It is clear that both WCMSE and MSE are expectation (or ensemble average) distortion metrics.

However, unlike MSE, the WCMSEcannot be generated from a fidelity criterion, in the strict sense of

the term. This stands in stark contrast with most distortionmetrics studied in the rate-distortion theory

literature, see, e.g., [6].

To demonstrate this fact, we first recall that, for a single, real valued scalar sourcex, a (scalar)

distortion measureis a function

ρ(x, y), ρ : R2 → R+
0 ,

that represents the cost of having a realizationx of the source being reconstructed asy. In the scalar

case, a distortion metricD(x, y) is usually generated from a given measure by taking the expected value

of ρ(x, y), that is,D(x, y) = E [ρ(x, y)]. In such cases,D(x, y) is simply called a distortion.

Crucially, when originated as the expected value of a distortion measure, a distortion metric is linear

in the joint probability distribution of source,x, and reconstruction,y. For example, consider a given

(scalar) distortion measureρ(x, y) and a scalar sourcex with PDFfx(·). For this source, two conditional

probability assignmentsfy1 | x(·|·), fy2 | x(·|·) generate two values for the distortion metricD(x, y) =
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E [ρ(x, y)], given by

D1 =

∫∫
ρ(x, y)fy1 | x(y|x)f(x)dydx

D2 =

∫∫
ρ(x, y)fy2 | x(y|x)f(x)dydx,

respectively. Then, for the conditional PDF assignmentfy3 | x(y|x) = cfy1 | x(y|x) + (1− c)fy2 | x(y|x),
with 0 ≤ c ≤ 1, the average distortion is

D3 =

∫∫
ρ(x, y)

[
cfy1 | x(y|x) + (1− c)fy2 | x(y|x)

]
f(x)dydx

= c

∫∫
ρ(x, y)fy1 | x(y|x)f(x)dydx + (1 − c)

∫∫
ρ(x, y)fy2 | x(y|x)f(x)dydx

= cD1 + (1− c)D2.

This example illustrates the fact that, if a distortion metric is expected value of a distortion measure, then

the distortion obtained by a weighted mixture of two or more operating regimes is the weighted sum of

the distortions associated with each regime.

To demonstrate that the WCMSE cannot be expressed as the expected value of a distortion measure,

it suffices to give an example in which the linearity of the WCMSE with respect to the probability

distribution of source and reconstruction does not hold. For this purpose, consider a hybrid operating

regime, obtained as the combination of two basic operating regimes. When the regime indicator variable

r equals1, which occurs with probabilityc, the reconstruction error is given byz1 = u−V x, whereV is

a scalar andu is a random variable uncorrelated tox. On the other hand, whenr equals2, which occurs

with probability(1− c), the reconstruction error isz2 = − x. The reconstruction error obtained from the

stochastic combination of these two regimes is characterized via

z3 =





z1 , if r = 1,

z2 , if r = 2.

The source-parallel error in the hybrid regime is(σx,z3/σ
2
x) x. The covariance betweenx andz3 is given

by

σx,z3 = E [x z3] = E [x z3 |r = 1] c+ E [x z3 |r = 2] (1− c)

= E [x(u−V x)] c+ E [x(− x)] (1− c) = −V σ2
xc− σ2

x(1− c)

= −σ2
x (V c+ 1− c)

Thus,

D
‖
3 =

σ2
x,z3

σ2
x

= (V c+ 1− c)2 σ2
x.
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The source-uncorrelated distortion term for the hybrid regime isD⊥
3 = σ2

z3−D
‖
3 . We will first determine

the variance ofz3, namely

σ2
z3 = E

[
z2
3

]
= E

[
z2
3 |r = 1

]
c+ E

[
z2
3 |r = 2

]
(1− c)

= E
[
(u−V x)2

]
c+ E

[
x2
]
(1− c)

= σ2
uc+ V 2σ2

xc+ σ2
x(1− c). (4.1)

With this, and recalling thatD⊥ = σ2
z −D‖, we obtain

D⊥
3 = σ2

uc+ σ2
x

[(
V 2c+ 1− c

)
− (V c+ 1− c)2

]
.

Notice from4.1thatσ2
z3 = cσ2

z1 +(1−c)σ2
z2 , i.e., the hybrid MSE is the linear combination of the MSEs

of each regime. However, for the WCMSE,

Da,b(x, x + z3) = aσ2
uc+ aσ2

x

[(
V 2c+ 1− c

)
− (V c+ 1− c)2

]
+ b (V c+ 1− c)2 σ2

x

= a
{
σ2

uc+ σ2
x

[(
V 2c+ 1− c

)
− (V c+ 1− c)2

]}
+ b (V c+ 1− c)2 σ2

x

6= aσ2
uc+ bV 2σ2

xc+ bσ2
x(1− c) = cDa,b(x, x + z1) + (1− c)Da,b(x, x + z2),

where equality holds if and only ifa = b or V = 1, i.e., in the special case in which the WCMSE is a

scaled version of the standard MSE, or when the first regime equals the second.

The above example proves that WCMSE, in general, cannot be expressed as the expected value of a

distortion measure. In particular,Da,b cannot be expressed as the expected value of a difference distortion

measure of the formρ(y − x), which is the focus in, e.g., [6, 151], andDa,b cannot be expressed as the

expected value of an input-dependent distortion measure ofthe formρx(y−x) or ρ(x,y), such as those

studied in, e.g., [18,152,153]. Nevertheless, it is still possible to characterize the rate-distortion function

for Gaussian sources using the WCMSE as the distortion metric, as will be shown in Section4.3below.

4.2.2 The Reconstruction Error Must Be Jointly Gaussian with the Source

The next lemma plays an important role in the results derivedsubsequently in this section. It will be used

to conclude that, for every realization ofRa,b(D), the reconstruction error is necessarily jointly Gaussian

with the source.

Lemma 4.1. Let x ∈ RN ∼ N (0,Kx), with |Kx| > 0. Let z ∈ RN andzG ∈ RN be two random

vectors with zero mean and the same covariance matrix, i.e.,Kz = KzG , also having the same cross-

covariance matrix with respect tox, that is,Kx,z = Kx,zG . If zG andx are jointly Gaussian, and ifz
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has any distribution, then the mutual information betweenx andx + z satisfies

I(x;x + z) ≥ I(x;x + zG). (4.2)

Equality is achieved in(4.2) if and only ifz ∼ N (0,Kz) with z andx being jointly Gaussian.

Proof. Definey , x + z andyG , x + zG. Then

I(x;x + z)− I(x;x + zG) = h(x|yG)− h(x|y) = h(zG|yG)− h(z|y)

= −
∫∫

fzG,yG(z,y) log(fzG|yG
(z|y))dzdy +

∫∫
fz,y(z,y) log(fz|y(z|y))dzdy (4.3)

(a)
= −

∫∫
fz,y(z,y) log(fzG|yG

(z|y))dzdy +

∫∫
fz,y(z,y) log(fz|y(z|y))dzdy

=

∫
fy(y)

∫
fz|y(z|y) log

(
fz|y(z|y)

fzG|yG
(z|y)

)
dzdy

=

∫
fy(y)D(fz|y=y‖fzG|yG=y)dy ≥ 0, (4.4)

whereD(f‖g) is the relative entropy (orKullback-Leibler distance) between the two probability den-

sity functionsf and g (see Definition2.14 on page38). Equality (a) follows from the fact that

log(fzG|yG
(z|y)) is a quadratic form ofz andy, and from the fact thatKz,y = KzG,yG . The in-

equality in (4.4) follows from the fact thatD(f‖g) ≥ 0, with equality if and only iff = g. Thus,

equality is achieved if and only if

fzG|yG
(z|y) = fz|y(z|y), ∀z, ∀y such thatfy(y) > 0. (4.5)

It will be shown next that (4.5) implies thatz andx are jointly Gaussian. For this purpose, first notice

that (4.5), together with the fact thatx = y − z, implies

fx(x) =

∫
fz|y(y − x|y)fy(y)dy =

∫
fzG|yG

(y − x|y)fy(y)dy, ∀x ∈ RN . (4.6)

But sincex can also be written asx = yG − zG, the following holds as well:

fx(x) =

∫
fzG|yG

(y − x|y)fyG(y)dy, ∀x ∈ RN . (4.7)

Equating (4.7) and (4.6) yields

∫
fzG|yG

(y − x|y)fyG(y)dy =

∫
fzG|yG

(y − x|y)fy(y)dy, ∀x ∈ RN . (4.8)

From the fact thatzG and yG are jointly normally distributed, it follows thatfzG|yG
(z|y) is the

PDF of a normally distributed random vector, sayu, with fixed variance and meanKxG,yGK†
yG

y =
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Kx,yK†
yy, ∀y ∈ N⊥

Ky
, see, e.g., [154,§ 22.1]. This, together with the fact thatfy(y) = fyG(y) =

0, ∀z, ∀y /∈ N⊥
Ky

1, allows one to write (4.8) as

∫
fu([I −Kx,yK†

y]y − x)fyG(y)dy,=

∫
fu([I −Kx,yK†

y]y − x)fy(y)dy, ∀x ∈ RN .

The integrals in this equation are convolution integrals. From this fact, and noting that the Fourier

transform offu is nonzero everywhere, we have that (4.5) implies fy(y) = fyG(y), ∀y ∈ RN . The

latter and (4.5) imply fz,y(z,y) = fzG,yG(z,y). Thus, we have shown that equality in (4.4) implies

z ∼ N (0,Kz) with z andx being jointly Gaussian. The converse, that is, the fact thatfz,y(z,y) =

fzG,yG(z,y), ∀z,y ∈ RN implies equality in (4.4), can be readily verified from (4.4). This completes

the proof.

Remark 4.1. We note that Lemma4.1 generalizes Lemma II.2 in [155], by relaxing the requirement,

used in [155], of havingz andzG independent ofx, to the requirementKx,z = Kx,zG . N

We can now address the problem of characterizingRa,b(D) for Gaussian sources. We begin with the

scalar case.

4.3 WCMSE-RDF for Gaussian Scalar Sources

For a Gaussian, zero mean random scalar sourcex reconstructed asy, the reconstruction error is the

random variable

z , y− x . (4.9)

Irrespective of howy is generated,z canalwaysbe decomposed into a source-uncorrelated term,

u , z−σx,z

σ2
x

x, (4.10)

and the remainderz− u = (σx,z/σ
2
x) x, which depends linearly onx. Notice that the random variableu

is orthogonal tox, i.e.,

E [u x] = 0. (4.11)

Upon defining

V , −σx,z

σ2
x

,

1 The variance of the random variableu , vT
y, wherev ∈ NKy

, is E
ˆ

(vT
y)(vT

y)T
˜

= vT Kyv = 0. By noting that

E
ˆ

(vT
y)(vT

y)T
˜

=
R

(vT y)2fy(y)dy, it follows thatfy(y) = 0, ∀y /∈ N⊥

Ky
.
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and then substituting (4.10) into (4.9), the reconstruction can be written as

y = (1− V ) x + u . (4.12)

From (4.11) and (4.12), it is clear that the source-uncorrelated and the source-parallel components of the

WCMSE are given respectively by

D⊥ = σ2
u (4.13a)

D‖ = V 2σ2
x. (4.13b)

Thus,

Da,b(x, y) = aD⊥ + bD‖ = aσ2
u + bV 2σ2

x. (4.14)

This allows us to define the WCMSE RDF for scalar random sources, as follows:

Definition 4.1 (Information-Theoretic WCMSE-RDF for Scalar Sources). The Information-Theoretic

WCMSE rate-distortion function for a scalar random source is defined as

Ra,b(D) , min
z:Da,b(x,x+ z)≤D

I(x; x + z),

whereDa,b(·, ·) is as defined in(4.14). N

The following theorem characterizesRa,b(D) for scalar Gaussian sources.

Theorem 4.2(Ra,b(D) for Gaussian Scalar Sources). The rate-distortion function for a scalar source

x ∼ N (0, σ2
x) with respect to the WCMSE distortion metric with weightsa, b is

Ra,b(D) =
1

2
ln

(
max

{
1 ,

aσ2
x

D
+ 1− a

b

})
, D > 0, (4.15)

whereD = Da,b(x, y). A reconstruction error random variablez achievesRa,b(D) if and only if it is

jointly Gaussian withx and

D⊥ = σ2
z −

σ2
x,z

σ2
x

(= σ2
u) = max

{
0 ,

D

a

(
1− D

bσ2
x

)}
, D > 0, (4.16a)

D‖ =
σ2

x,z

σ2
x

(= σ2
xV

2) = min

{
σ2

x ,
D2

b2σ2
x

}
, D > 0.

N

Proof. We first note that for anyD ≥ bσ2
x, the choiceV = 1 and σ2

u = 1
a (D − bσ2

x) yields

Da,b(x, x + z) = bσ2
x andI(x; y) = 0. Thus,Ra,b(D) = 0, ∀D ≥ bσ2

x. Secondly, the mutual in-

formation betweenx and(x + z) is given by

I(x; x + z) = h(x + z)− h(x + z | x) = h(x + z)− h(−V x+ u | x) = h(x + z)− h(u | x) (4.17)
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where Properties2.1 and2.6 have been used (see Section2.3). In view of Lemma4.1, the optimalz

must be Gaussian. It thus follows that the optimalu must be jointly Gaussian withx. The fact thatu is

Gaussian, together with (4.11), implies thatu is independent ofx. Thus, from (4.17),2

I(x; y) = h(x + z)− h(u) =
1

2
ln(2π e σ2

x + z)−
1

2
ln(2π e σ2

u)

=
1

2
ln([1 − V ]2σ2

x + σ2
u)− 1

2
ln(σ2

u). (4.18)

For any given and fixed value ofD > 0, the noise varianceσ2
u can be expressed in terms ofV , as follows

σ2
u =

D − bV 2σ2
x

a
. (4.19)

Substituting this into (4.18) one obtains

I(x; y) =
1

2
ln

(
[1− V ]2σ2

x +
D − bV 2σ2

x

a

)
− 1

2
ln

(
D − bV 2σ2

x

a

)
. (4.20)

The value ofV that minimizes (4.20) needs to satisfy

0 =
∂I(x; y)

∂V
=
−σ2

x[1− V ]− b
aσ

2
xV

[1− V ]2σ2
x +

D−bV 2σ2
x

a

− −
b
aσ

2
xV

D−bV 2σ2
x

a

⇐⇒

0 =

(
−σ2

x[1− V ]− b

a
σ2

xV

)(
D − bV 2σ2

x

)
+
b

a
σ2

xV
(
a[1− V ]2σ2

x +D − bV 2σ2
x

)

= −σ2
x[1− V ]

(
D − bV 2σ2

x

)
+ bσ4

xV [1− V ]2 = [1− V ]
(
−D + bV 2σ2

x + bσ2
x[1− V ]V

)

= [1− V ]
(
bσ2

xV −D
)
⇐⇒

V =





1 , in any case, or

D
bσ2

x
, if D

b ≤ σ2
x.

(4.21)

But for any givenD, the right hand side of (4.19) must be non-negative. Thus, (4.21) becomes

V = min

{
D

bσ2
x

, 1

}
(4.22)

Substituting (4.22) into (4.13) yields (4.16). Finally, substitution of (4.22) into (4.20) yields (4.15). This

completes the proof.

The rate-distortion function characterized above is achievable only when the source is a scalar mem-

oryless process, by encoding (infinitely) long sequences ofit, see Section4.8. In this case, each source

element can be taken as a different realization of a single scalar random variable.

2Notice thatσ2
u is non-zero; otherwise, unlessz = − x, the mutual information betweenx andz +z would be unbounded.
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Figure 4.1: Geometric locus of the realizations of the rate distortion for a scalar Gaus-

sian source x and (a): MSE as the distortion metric; (b) WCMSE with weights a, b as the

distortion metric, according to (4.25). In all plots, σ2
x = 1 and b = 1.

4.3.1 Geometrical Interpretation

For a Gaussian, zero-mean, scalar random sourcex, and using MSE as the distortion metric, any real-

ization of Shannon’sR(D) is always such that the reconstruction errorz is Gaussian and independent of

the reconstruction random variabley. 3 This can be seen as a consequence of the well known fact that,

minimum MSE filtering (in this case, scaling), applied to a noisy signal, leaves a reconstruction error

which is uncorrelated to the noisy signal, so that

σ2
x = σ2

y + σ2
z . (4.23)

A geometrical interpretation of this fact is shown in Fig.4.1-(a). In this figure, the vectors labeled with

the lengthsσx, σy andσz, represent, respectively, the source, the reconstruction, and the reconstruction

error. The squared norms of these vectors are precisely the variances of the variables they represent.

Sincey = x + z, and in view of (4.23), their respective vectors form a right-angled triangle, with x being

the hypotenuse. Therefore, for all possible values of the distortionσ2
z , the corresponding outputs describe

3In a realization of the quadratic Gaussian RDF, the reconstruction error must be jointly Gaussian with the output (reconstructed)

signal. Thus, if the latter were not independent from the output signal, then a Wiener filter applied to the output signal would reduce

the MSE, whilst preserving the mutual information. The resulting reconstruction error from a Wiener filter is uncorrelated to the

output of the filter, which, for jointly Gaussian signals, implies independence.
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a semi-circle, such as the one shown in Fig.4.1-(a). In other words, every point on the circle represents

a point on theR(D) curve ofx. This type of plot gives a clear idea of the statistical relationship between

source and reconstruction error. Thus, for example, as the distortion becomes smaller (smallerσ2
z ), the

right-angle vertex of the triangle slides to the right alongthe circle. This implies that the reconstruction

errorz not only becomes smaller, but also becomes more orthogonal with respect to the source. In these

cases, most of the distortion will be comprised of additive noise, uncorrelated to the source. Conversely,

for large distortions the right-angle vertex moves to the left, and the reconstruction error increasingly

resembles the negative of the source. This can be seen as strong source attenuation (linear distortion)

plus a small amount of source-uncorrelated error. In all cases, the circle shown in Fig.4.1-(a) determines

the balance between source-uncorrelated and source-parallel errors for all possible realizations ofR(D).

The situation with the WCMSE rate-distortion function is different to the one just described. As

will be shown below, the geometric locus of all pairs of possible values(D⊥, D‖), stemming from the

realization ofRa,b(D) for a Gaussian scalar sourcex, is a family of ellipses inR2. To see this, recall,

from the definition of the WCMSE (see (1.6)), that

aD⊥ + bD‖ = Da,b(x, y). (4.24)

On the other hand (4.16), implies that, whenRa,b(D) is realized,Da,b = bσ2
x

√
D‖ . Substituting the

latter into (4.24) we obtain, after some algebra, that

(√
D‖ − σx

2

)2

+
a

b
D⊥ =

σ2
x

4
. (4.25)

This equation describes a family of ellipses whose vertical-diameter/horizontal-diameter ratio is given

by
√
b/a . Three of these ellipses are illustrated in Fig.4.1-(b). Whena = b = 1, the ellipse obtained is

a circle (solid line in Fig.4.1-(b)), and WCMSE equals standard MSE. Whena < b, source-uncorrelated

errors are less important that source-parallel errors, andthus the realizations ofRa,b(D) lie on ellipses

whose vertical axis (perpendicular tox) are larger than their horizontal axis. The opposite situation

occurs whena > b. It is also interesting to see that whena 6= b, and ifb/a <∞, the reconstruction error

that realizesRa,b(D) is neither orthogonal to the source nor to the reconstruction. In the limit situation

in which a is bounded andb → ∞, the ellipse degenerates into two parallel vertical lines,the left line

at−∞, the right line passing by the point of theσx vector. For this extreme case, all the realizations of

Ra,b(D) are such that the reconstruction error is completely orthogonal to the source.

The plot ofRa,b(D) for a fixed value ofa and several values of the parameterb is shown in Fig.4.2.

For all these curves,a=1. As expected from (4.15), the distortion level at which the rate becomes zero

(and the source is reconstructed simply by its mean value) equals the value ofb. In the limit asb → ∞,
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the plot ofRa,b(D) approaches zero only asymptotically asD →∞.
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Figure 4.2: Ra,b for a unit-variance Gaussian scalar source. In all plots, a=1.

4.3.2 Convexity ofRa,b(D)

It will be shown below that the WCMSE rate-distortion function characterized aboveis not convex for

some choices of weightsa, b. For this purpose, we take the first derivative ofRa,b(D). Specifically,

differentiation of (4.15) yields

dRa,b(D)

dD
= −1

2
· aσ2

x

aσ2
xD + [1 − a

b ]D
2
, D ≤ bσ2

x.

Differentiating again,

d2Ra,b(D)

dD2
=
aσ2

x

2

(
aσ2

xD + [1− a
b ]D

2
)−2 (

aσ2
x + 2[1− a

b ]D
)
, D ≤ bσ2

x.

Thus, for distortions within the interval(0, bσ2
x],

d2Ra,b(D)

dD2
≥ 0 ⇐⇒ 0 ≤ aσ2

x + 2[1− a
b ]D (4.26)

If a ≥ b, thenRa,b(D) is convex. Otherwise, the condition in (4.26) becomes

d2Ra,b(D)

dD2
≥ 0 ⇐⇒ −aσ2

x ≤ 2[1− a
b ]D ⇐⇒

aσ2
x

2[ab − 1]
≥ D. (4.27)
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As can be seen from (4.27), if b < a, thenRa,b(D) is convex only over the union of intervals

(0 , aσ2
x/(2[ab − 1])] ∪ (bσ2

x,∞). Therefore,Ra,b(D) is convex over the positive real line if and only if

aσ2
x

2[ab − 1]
≥ bσ2

x ⇐⇒
a

2[a− b] ≥ 1 ⇐⇒ a

b
≤ 2 (4.28)

For future reference, we summarize the above result in the form of the following lemma.

Lemma 4.3. For a zero mean, Gaussian and scalar random source,Ra,b(D) is convex if and only if

a < 2b. N

The fact thatRa,b(D) is non-convex for certain choices ofa, b, may seem, at first, surprising. After

all, it is well known that any rate-distortion function originating from a single-letter fidelity criterion is

convex, as shown in [6, Theorem 2.4.1]. However, the proof ofTheorem 2.4.1 in [6] relies upon the fact

that the distortion is linear in the joint probability distribution of source and reconstruction. Thus, the

possible non-convexityofRa,b(D) does not contradict the latter theorem since, as shown in Section4.2.1,

Da,b(x, y) is not linear infy | x(·|·).
The dependence ofRa,b(D) on the ratioa/b is illustrated in Fig.4.3. In this figure, four plots of

Ra,b(D) are displayed for a unit-variance Gaussian source and a fixedWCMSE weight valueb = 1.

Each plot corresponds to a different value of the ratioa/b. Notice from this figure that, fora/b = 2,

Ra,b(D) is still convex, although its plot is almost a straight line for distortions close tobσ2
x. On the

other hand, as predicted by (4.28), the choicea/b = 10 yields a non-convexRa,b(D), as can be seen in

Fig. 4.3(− · − line plot).

Because convexity ofRa,b(D) is required for most of the results to be obtained in the sequel, we shall

restrict our analysis, from here on, to weightsa, b such thatb ≥ a/2. In doing so, we will leave aside

situations in which the cost of source-parallel error is less than half the cost of source-uncorrelated error.

Although such situations could arise in practice, it can be argued that the conditionb > a/2 holds for

many cases of interest. First, it holds whenever it is important to achieve, or closely approximate, a given

signal transfer function, as described in Section 1.1. Second, the fact that the use of dither in audio and

image quantization yields noise that is perceived as more acceptable by human listeners/observers [156–

158], suggests that the perceptual cost of source-uncorrelated noise in image and audio encoding is,

in general, less than that of source-parallel noise. The reader may argue against the validity of latter

statement since, for instance, simple forms of source parallel distortion, such as a small delay (in audio)

or pixel shift (in images), are barely objectionable by a human listener or observer. Nevertheless, loosely

speaking, from a data compression viewpoint there is littleto gain from such forms of distortion. (Recall

that altering the phase of a random source has no effect on itsentropy). In other words, it can be

conjectured that source-parallel distortion can provide data compression only when it takes the form
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Figure 4.3: Ra,b(D) for a unit-variance Gaussian scalar source. In all the plots b = 1.

of attenuation of the power of the source (in the presence of noise), or when it involves discarding

part of its information content. The perceptual impact of such “compressive” forms of source-parallel

distortion is likely to be at least comparable to the perceptual impact of source-uncorrelated distortion,

hence satisfyingb > a/2. Of course, the degree of validity of the latter assumption will ultimately

depend on each particular application. The validity of the latter argument in lossy image compression is

supported by the sequence of images shown in the example in Section4.7, on page143.

4.4 WCMSE RDF For Gaussian Vector Sources

In this section we derive the WCMSE-rate distortion function for Gaussian vectors. Before proceeding,

we need to establish some preliminary results.

4.4.1 Preliminary Results

The following Lemma will be useful in subsequent derivations.

Lemma 4.4. Letv1,v2 be two mutually independent random vectors. Then, the following holds:

Ī(v1,v2 ; w1,w2) ≥ Ī(v1;w1) + Ī(v2;w2) (4.29)
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Equality holds if and only if the random vectorsn1 , w1 − v1 andn2 , w2 − v2 are such that

fn1,n2,v1,v2(n1,n2,v1,v2) = fn1,v1(n1,v1)fn2,v2(n2,v2) (4.30)

almost everywhere. N

Proof. We proceed by parts. We first prove (4.29), and then the necessity and sufficiency of (4.30) for

achieving equality in (4.29).

1. (≥): We have that

Ī(v1,v2 ; w1,w2) = h̄(v1,v2)− h̄(v1,v2|w1,w2)

= h̄(v1,v2)− h̄(n1,n2|w1,w2)

(a)

≥ h̄(v1,v2)− h̄(n1|w1,w2)− h̄(n2|w1,w2)

(b)

≥ h̄(v1,v2)− h̄(n1|w1)− h̄(n2|w2)

= h̄(v1) + h̄(v2)− h̄(n1|w1)− h̄(n2|w2).

= h̄(v1) + h̄(v2)− h̄(v1|w1)− h̄(v2|w2).

= Ī(v1;w1) + Ī(v2;w2).

Equality is achieved in(a) if and only if the following Markov chain holds

n1 ←→ {w1,w2} ←→ n2. (4.31)

(See Property2.3 and Definition2.18in Section2.3.) Similarly, equality holds in(b) if and only

if n1,n2, w1 andw2 satisfy the following Markov chains

w2 ←→ w1 ←→ n1, (4.32)

w1 ←→ w2 ←→ n2. (4.33)

This follows directly from Property2.2 and Definition 2.18, see Section2.3. This estab-

lishes (4.29).

2. (⇒): The Markov chain in (4.31) is equivalent to

fn1,n2|w1,w2
(n1,n2|w1,w2) = fn1|w1,w2

(n1|w1,w2)fn2|w1,w2
(n2|w1,w2), (4.34)

∀n1,n2,w1,w2.
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Similarly, the Markov chain in (4.32) is equivalent to

fn1,w2|w1
(n1,w2|w1) = fn1|w1

(n1|w1)fw2|w1
(w2|w1), ∀n1,w1,w2

⇐⇒ fn1|w2,w1
(n1|w2,w1) = fn1|w1

(n1|w1), ∀w1,w2 : fw2|w1
(w2|w1) > 0, (4.35)

whilst the Markov chain (4.33) is equivalent to

fn2,w1|w2
(n2,w1|w2) = fn2|w2

(n2|w2)fw1|w2
(w1|w2), ∀n2,w1,w2

⇐⇒ fn2|w2,w1
(n2|w2,w1) = fn2|w2

(n2|w2), ∀w1,w2 : fw1|w2
(w1|w2) > 0. (4.36)

Substitution of (4.35) and (4.36) into (4.34) yields

fn1,n2|w1,w2
(n1,n2|w1,w2) = fn1|w1

(n1|w1)fn2|w2
(n2|w2),

∀w1,w2 : fw1,w2(w1,w2) > 0.
(4.37)

On the other hand, sincew1 = v1 + n1 andw2 = v2 + n2, we have that

fn1,n2|w1,w2
(n1,n2|w1,w2) = fn1,n2|v1,v2

(n1,n2|w1 − n1,w2 − n2), (4.38a)

fn1|w1
(n1|w1) = fn1|v1

(n1|w1 − n1), and (4.38b)

fn2|w2
(n2|w2) = fn2|v2

(n2|w2 − n2), (4.38c)

for all n1,n2,w1,w2. Substitution of (4.38) into (4.37) yields

fn1,n2|v1,v2
(n1,n2|w1 − n1,w2 − n2) = fn1|v1

(n1|w1 − n1)fn2|v2
(n2|w2 − n2),

∀n1,n2,w1,w2 : fw1,w2(w1,w2) > 0

⇐⇒ fn1,n2|v1,v2
(n1,n2|v1,v2) = fn1|v1

(n1|v1)fn2|v2
(n2|v2),

∀n1,n2,v1,v2 : fw1,w2(v1 + n1,v2 + n2) > 0.

=⇒ fn1,n2,v1,v2(n1,n2,v1,v2) = fn1,v1(n1,v1)fn2,v2(n2,v2), (4.39)

∀n1,n2,v1,v2 : fn1,n2,v1,v2(n1,n2,v1,v2) > 0.

The last implication in the above follows on multiplying both sides of the preceeding equation by

fv1,v2(v1,v2) = fv1(v1)fv2(v2) (recall thatv1 andv2 are independent), and from the fact that

fn1,n2,v1,v2(n1,n2,v1,v2) > 0 =⇒ fw1,w2(v1 + n1,v2 + n2) > 0, ∀n1,n2,v1,v2.

It is only left to demonstrate that (4.39) implies (4.30). In view of (4.39), if (4.30) does not

hold, then there must exist a set of vectorsP, having non-zero measure, such that, for all

{n′
1,n

′
2,v

′
1,v

′
2} ∈ P,

fn1,n2,v1,v2(n
′
1,n

′
2,v

′
1,v

′
2) = 0 (4.40)
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while

fn1,v1(n
′
1,v

′
1)fn2,v2(n

′
2,v

′
2) > 0. (4.41)

Clearly, (4.41) implies thatfn1,v1(n
′
1,v

′
1) > 0 and thatfn2,v2(n

′
2,v

′
2) > 0. Since

fn1,v1(n
′
1,v

′
1) =

∫∫
fn1,n2,v1,v2(n

′
1,n2,v

′
1,v2)dn2dv2, and (4.42)

fn2,v2(n
′
2,v

′
2) =

∫∫
fn1,n2,v1,v2(n1,n

′
2,v1,v

′
2)dn1dv1, (4.43)

it follows that, for all{n′
1,n

′
2,v

′
1,v

′
2} ∈ P, the sets

S1(n
′
2,v

′
2) , {{n1,v1} : fn1,v1,n2,v2(n1,n

′
2,v1,v

′
2) > 0} (4.44)

S2(n
′
1,v

′
1) , {{n2,v2} : fn1,v1,n2,v2(n

′
1,n2,v

′
1,v2) > 0} (4.45)

have non-zero measure. On the other hand, dividing both sides of (4.39) by eitherfn2,v2(n
′
2,v

′
2)

or byfn1,v1(n
′
1,v

′
1), we obtain, for each case,

fn1,v1|n2,v2
(n1,v1|n′

2,v
′
2) = fn1,v1(n1,v1), ∀{n1,v1} ∈ S1(n

′
2,v

′
2), (4.46)

fn2,v2|n1,v1
(n2,v2|n′

1,v
′
1) = fn2,v2(n2,v2), ∀{n2,v2} ∈ S2(n

′
1,v

′
1). (4.47)

From (4.46) and (4.44), we have:

1 =

∫∫

{n1,v1}∈S1(n′
2,v

′
2)

fn1,v1|n2,v2
(n1,v1|n′

2,v
′
2)dn1dv1 =

∫∫

{n1,v1}∈S1(n′
2,v

′
2)

fn1,v1(n1,v1)dn1dv1.

This implies thatfn1,v1(n1,v1) = 0 almost everywhere outsideS1(n
′
2,v

′
2). A similar analysis

yields thatfn2,v2(n2,v2) = 0 almost everywhere outsideS2(n
′
1,v

′
1). It then follows that

∫

P

dn′
1dn

′
2dv

′
1dv

′
2 =

∫

n′
1,v

′
1




∫

{n′
2,v

′
2}/∈S2(n′

1,v
′
1)

dn′
2dv

′
2


 dn′

1dv
′
1 = 0, (4.48)

and thusP has zero measure. This proves that achieving equality in (4.29) implies (4.30).

3. (⇐). Here it will be shown that (4.30) implies that equality holds in (4.29). We have that

Ī(v1,v2;y1,y2) = h̄(y1,y2)− h̄(y1,y2|v1,v2)

= h̄(y1,y2)− h̄(n1,n2|v1,v2)

= h̄(y1,y2)− h̄(n1|v1,v2)− h̄(n2|v1,v2,n1)

(a)
= h̄(y1,y2)− h̄(n1|v1)− h̄(n2|v2)

(b)
= h̄(y1) + h̄(y2)− h̄(n1|v1)− h̄(n2|v2)

= Ī(v1;y1) + Ī(v2;y2)
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where(a) follows directly from (4.30). Also, (b) stems from Property2.3(on page37), and from

the fact that (4.30) impliesfy1,y2(y1,y2) = fy1(y1)fy2(y2) almost everywhere. This completes

the proof.

The above lemma allows one to establish the following result:

Theorem 4.5. Let {vi}Ni=1 be mutually independent random vectors (i.e., a vector product source).

LetD
(
{vi}Ni=1, {wi}Ni=1

)
be a sum distortion metric, i.e., one that satisfiesD

(
{vi}Ni=1, {wi}Ni=1

)
=

∑N
i=1Di (vi,wi). Denote the RDF of each vectorvi with respect to the distortion metricDi(·, ·) as

ri(d), and assume that all the functionsri(·) are convex. Define the scalarsdmaxi , min{d : ri(d) = 0}.
LetR(D) be the rate-distortion function of{vi}Ni=1 with respect to the distortion metricD(·, ·). Then

R(D) =

N∑

i=1

ri(di), (4.49)

D =

N∑

i=1

di, (4.50)

where distortionsdi are such that4

if r′i(d
max
i ) ≥ s, then r′i(di) = s, or else, (4.51a)

if r′i(d
max
i ) < s, then di = dmaxi , (4.51b)

for some common slopes < 0. Moreover,R(D) is achieved if and only if the distortion random vectors

ni , wi − vi, i = 1, 2, . . . , N , are such that

fn1,n2,...,nN ,v1,v2,...,vN (n1,n2, . . . ,nN ,v1,v2, . . . ,vN ) =

N∏

i=1

fni,vi(ni,vi) (4.52)

almost everywhere. N

Proof. From Lemma4.4, we have that

Ī
(
{vi}Ni=1 ; {wi}Ni=1

)
≥

N∑

i=1

Ī (vi ; wi) (4.53)

with equality if and only if (4.52) holds. On the other hand, the right hand side of (4.53), as

well as D
(
{vi}Ni=1, {wi}Ni=1

)
depend only on the PDFs{fni,vi}Ni=1. Thus, for any value of

4Here the notationr′(d) denotes the derivative ofr(d) with respect tod. If r′(d) is discontinuous atd, thenr′(d) denotes the

left-derivative ofr(d) with respect tod.
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D
(
{vi}Ni=1, {wi}Ni=1

)
, Ī
(
{vi}Ni=1 ; {wi}Ni=1

)
is minimized if and only if (4.52) holds. Therefore,

R(D) is achieved if and only if (4.52) holds, and

R(D) = min
{wi}N

i=1:D({vi}N
i=1 , {wi}N

i=1)≤D
Ī
(
{vi}Ni=1 ; {wi}Ni=1

)

= min
{wi}N

i=1:D({vi}N
i=1 , {wi}N

i=1)≤D

N∑

i=1

Ī (vi ; wi)

= min

{di}N
i=1:

N
P

i=1

di≤D

N∑

i=1

ri(di). (4.54)

The distortions{di}Ni=1 that solve the minimization problem on the right-hand side of (4.54) are such

that the Lagrangian

L ,

N∑

i=1

ri(di) + s

(
D −

N∑

i=1

ri(d)

)
(4.55)

is minimized, wheres is a Lagrange multiplier. Hence, the following must hold

r′i(di)− s = 0, ∀i = 1, 2, . . . , N. (4.56)

Since the functionsri(d) are convex, the distortionsdi that satisfy (4.56) are unique. In addition, if for

somei ∈ {1, 2, . . . , N}, r′i(dmaxi ) < s, thenri(d) has a “corner” atd = dmaxi , and the slope at this

point can be assumed to take any value betweenr′i(d
max
i ) and0. This, together with (4.56), leads directly

to (4.51), completing the proof.

Remark 4.2. The result in Theorem4.5can be seen as an extension of Theorem 2.8.1 and Corollary 2.8.1

in [6] to continuous random variables. However, we believe that Theorem4.5 improves on [6, The-

orem 2.8.1], by actually showing that theR(D)-achieving probability assignments are unique, and

that (4.52) is necessary. The latter claim is indeed present the statement of Theorem 2.8.1 in [6], which,

near its end, reads: “[...] Moreover, the conditional probability assignment that yieldsR(Ds) is the

product of the assignments that yieldRα(Dα
s ) andRβ(Dβ

s )”. The latter can be understood as saying

that such probability assignment that realizesR(D) is unique and that(4.52) is necessary for achieving

R(D). However, the proof of Theorem 2.8.1in [6] only shows that, in the notation of this thesis,(4.52) (to-

gether with(4.51)) is sufficientfor achievingR(D). Thus, Theorem4.5improves on [6, Theorem 2.8.1]

by actually showing that theR(D)-achieving probability assignments are unique, and that(4.52) is

indeed necessary. N
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4.4.2 Ra,b(D) for Gaussian Vectors

For a vector random sourcex ∈ RN reconstructed asy, the reconstruction error is

z , y − x. (4.57)

As in the scalar case,z can always be decomposed into a source-uncorrelated term

u , z + V x,

and the remainder−V x, which corresponds to the source-parallel term. Thelinear distortionmatrix

V ∈ RN×N is defined as

V , −Kz,xK−1
x . (4.58)

Thus, the reconstruction error can be written as

z = u− V x (4.59)

whereu is such that E
[
uxT

]
= 0. From this, it follows that the WCMSE for the vector case takes the

form

Da,b(x,y) =
1

N
tr
{
aKu + bV KxV T

}
. (4.60)

We can now define the WCMSE rate-distortion function for random vectors.

Definition 4.2. The WCMSE-Rate-Distortion Function for a random vector source x ∈ RN is defined

as

Ra,b(D) , min
z:Da,b(x,x+z)≤D

1

N
I(x;x + z)

N

The following theorem characterizesRa,b(D) for Gaussian vector sources:

Theorem 4.6(Ra,b(D) for Gaussian Vector Sources). The rate-distortion function for a Gaussian ran-

dom vector source with zero mean and covariance matrixKx, with respect to the WCMSE distortion

metric with weightsa, b > 0, wherea ≤ 2b, is given by

Ra,b(D) =
1

2N

N∑

k=1

max





0 , ln




[
σk +

√
σ2
k + [1− a

b ]α
]2

α







, (4.61a)

D =
1

N

N∑

k=1

min



bσ

2
k ,

aασk/2

σk +
√
σ2
k + [1− a

b ]α



 (4.61b)
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where

σ2
i , λi(Kx) , i = 1, . . . , N,

are the eigenvalues ofKx. A reconstruction errorz = y− x achievesRa,b(D) if and only ifz is jointly

Gaussian withx and if and only if the source-uncorrelated and source-parallel components ofz are

Kz −Kz,xK−1
x KT

z,x = K⋆
u , Q diag





max





0 ,
α

4


1− α

(
σk +

√
σ2
k + [1− a

b ]α
)2












QT

(4.62a)

Kz,xK−1
x KT

z,x = V KxV T = Q diag





min




σ2
k ,

(1/4)(a/b)2α2

(
σk +

√
σ2
k + [1− a

b ]α
)2









QT (4.62b)

whereQ is a unitary matrix having the eigenvectors ofKx as its columns. The linear distortion matrix

necessary to realizeRa,b(D) is

V ⋆ , Kz,xK−1
x = Qdiag



min



1 ,

(1/2)(a/b)α

σ2
k + σk

√
σ2
k + [1− a

b ]α







QT . (4.62c)

N

Proof. The eigenvalue decomposition ofKx is

Kx = Q diag{σ2
i }QT ,

SinceQ is invertible, the following holds

I(x;x + z) = h(x) − h(x|x + z) = h(QTx)− h(QTx|x + z) = h(QTx)− h(QTx|QT (x + z)).

(4.63)

Define

x̄ , QTx , and z̄ , QT z. (4.64)

Substitution of (4.64) into (4.63) yields

I(x;x + z) = I(x̄; x̄ + z̄). (4.65)

Substituting (4.59) into (4.64) we obtain

z̄ = QTu−QTV x = ū−QTV Qx̄ = ū− V̄ x̄, (4.66a)
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where

n̄ , QTu, (4.66b)

V̄ , QTV Q, and (4.66c)

E
[
x̄ūT

]
= 0.

Substitution of (4.66b) and (4.66c) into (4.60) yields

Da,b(x,x + z) =
1

N
tr
{
aKn + bV KxV T

}
=

1

N
tr
{
aQTKnQ + bQTV Kx(QTV )T

}

=
1

N
tr
{
aQTKnQ + bQTV QKx̄QTV TQ

}

=
1

N
tr
{
aKū + bV̄ Kx̄V̄

T
}
, (4.67)

= Da,b(x̄, x̄ + z̄). (4.68)

where (4.68) follows from (4.60) and (4.66). Therefore, in view of (4.65) and (4.68), the problem of

finding the WCMSE-RDF forx is equivalent to finding the WCMSE-RDF forx̄. Conveniently, the latter

is an i.i.d. Gaussian random vector with covariance matrixKx̄ = diag
{
σ2
i

}
. Using the fact thatKx is

diagonal in (4.67) allows one to writeDa,b(x̄, ȳ) as

Da,b(x̄, ȳ) =
1

N

N∑

k=1

aη2
k +

1

N

N∑

k=1

bσ2
kp

2
k =

1

N

N∑

k=1

dk, (4.69)

where

dk , aη2
k + bσ2

kp
2
k η2

k , [K ū]k,k p2
k , [V̄

T
V̄ ]k,k. (4.70)

From these definitions and from (4.66), it is easy to see thatdk, η2
k, andpkσ2

k are, respectively, the

WCMSE, the source-uncorrelated distortion, and the source-parallel distortion associated with thek-th

scalar element of̄x. Denote the WCMSE rate-distortion function of thek-th element of̄x by rk(d).

From Theorem4.2, we have

rk(d) ,
1

2
ln
(
max

{
1 ,

a

d
σ2
k + 1− a

b

})
. (4.71)

Recall from Lemma4.3 that the rate-distortion functionsrk(d) will be convex if and only ifa/b ≤ 2.

From the fact that the elements ofx̄ are i.i.d., and in view of (4.69), it is clear that̄x is anN -fold product

source and thatDa,b(x̄, ȳ) is a sum distortion metric. Thus, upon applying Theorem4.5, we find that
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Ra,b(D) is given by

D =
1

N

N∑

k=1

dk,

Ra,b(D) =
1

N

N∑

k=1

rk(dk), (4.72)

where each scalar distortiondk is such that

if r′k(bσ
2
k) > s, then r′k(dk) = s (4.73)

if r′k(bσ
2
k) ≤ s, then dk = bσ2

k, (4.74)

wherer′k(t) = drk(t)
dt , for some common slopes < 0. Differentiation of (4.71) yields

r′k(d) =





− 1/2

d+ [ 1a − 1
b ]

1
σ2

k
d2

, d ≤ b σ2
k

0 , d > b σ2
k

∀k ∈ {1, . . . , N} (4.75)

Direct evaluation of the latter atd = bσ2
k yields that

r′k(bσ
2
k) = − 1/2

bσ2
k + [ ba − 1]bσ2

k

= − a

2b2σ2
k

,

which when replaced into (4.74) yields that

− a

2b2σ2
k

≤ s =⇒ dk = bσ2
k.

Else, if− a
2b2σ2

k
> s, then the right-hand-side (RHS) of (4.73) must hold. In view of (4.75), the latter

implies thatdk satisfies

dk + [ 1a − 1
b ]

1
σ2

k
d2
k = −1/(2s) ⇐⇒ 0 = [ 1a − 1

b ]d
2
k + σ2

kdk + σ2
k/(2s). (4.76)

If [ 1a − 1
b ] 6= 0, then (4.76) holds iff

dk = −
σ2
k ± σk

√
σ2
k − 2[ 1a − 1

b ]
1
s

2[ 1a − 1
b ]

. (4.77)

In order to determine the correct sign preceding the square root in this equation, we recall from

Lemma4.3 that, if a < 2b, thenrk(d) is a convex function, for everyk. The convexity ofrk(d),

together with (4.73), implies thatd dk

ds ≥ 0. To verify whether the latter holds, we differentiate (4.77)

with respect tos. This yields

d dk
ds

= − ±σk
[ 1a − 1

b ]
· −2[ 1a − 1

b ](− 1
s2 )√

σ2
k − 2[ 1a − 1

b ]
1
s

= − ±2σk(
1
s2 )√

σ2
k − 2[ 1a − 1

b ]
1
s

.
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Thus, the only consistent option for the± in (4.77) is the “minus” sign. Upon substituting± by−, and

then multiplying both the numerator and denominator byσk +
√
σ2
k − 2[ 1a − 1

b ]
1
s , (4.77) becomes

dk = − σk
1
s

σk +
√
σ2
k − [ 1a − 1

b ]
2
s

=
(1/2)aασk

σk +
√
σ2
k + [1− a

b ]α
, (4.78)

where the change of variable

α = − 2

as

has been used. On the other hand, if[ 1a − 1
b ] = 0, then (4.76) leads directly todk = −1/(2s) = aα

4 ,

which is the same result obtained from (4.78). Substitution of (4.78) into (4.71) and then into (4.72)

yields (4.61a). Similarly, substitution of (4.78) into (4.69) yields (4.61b).

From (4.52) in Theorem4.5, it also follows thatRa.b(D) is achieved if and only ifK z̄ andK z̄,x̄ are

diagonal matrices. Thus, from (4.70),

K z̄ = diag
{
η2
k + p2

kσ
2
k

}
; K z̄,x̄K−1

x̄ = − diag {pk} ; Kū = diag
{
η2
k

}
. (4.79)

From Theorem4.2,

pk =
dk
bσ2
k

=
(1/2)(a/b)α

σ2
k + σk

√
σ2
k + [1− a

b ]α
,

and

η2
k =

α

4


1− α

(
σk +

√
σ2
k + [1− a

b ]α
)2


 .

Substitution of (4.80) into (4.79), together with the fact that

Ku = QKūQT ,

Kz,xK−1
x = −V = −QV̄ QT = QK z̄,x̄K−1

x̄ QT ,

yields (4.62). This completes the proof.

Remark 4.3. Strictly speaking, Theorem4.6 characterizesRa,b(D) for i.i.d. vector processes only,

since the proof of achievability to be provided in Section4.8requires the encoding of an infinite number

of vectors.

The characterization of the WCMSE rate-distortion function for vector sources given in Theorem4.6

will be helpful in deriving the characterization ofRa,b(D) for random stationary processes. This is done

below.
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4.5 WCMSE RDF For Gaussian Stationary Processes

For a w.s.s. random source{x(k)} reconstructed as the random process{y(k)}, the reconstruction error

is the process

{z(k)} , {y(k)} − {x(k)} .

Definition 4.3. The WCMSE-Rate Distortion Function for a w.s.s. source is defined as

Da,b(D) , lim
N→∞

(
min

{z(k)}:Da,b(x(N), x(N)+z(N))≤D
Ī(x(N);x(N) + z(N))

)
,

where the random vectors

x(N) ,
[
x(−N−1

2 ), x(−N−1
2 + 1), . . . , x(N−1

2 )
]T
, N ∈ {2j + 1}∞j=0

z(N) ,
[
z(−N−1

2 ), z(−N−1
2 + 1), . . . , z(N−1

2 )
]T
, N ∈ {2j + 1}∞j=0 .

N

If {x(k)} and{z(k)} are jointly w.s.s., then the WCMSE takes the form

Da,b({x(k)} , {y(k)}) , a
1

2π

∫ π

−π
Su(ejω)dω + b

1

2π

π∫

−π

∣∣V (ejω)
∣∣2 Sx(e

jω)dω (4.81)

where

V (ejω) ,
Sz x(e

jω)

Sx(ejω)
, ∀ω ∈ [−π, π], (4.82)

is thelinear distortion frequency responseandSu(ejω) is the PSD of the source-uncorrelated distortion,

associated to the distortion{z(k)} and the source{x(k)}.

The following theorem, which characterizesRa,b(D) for Gaussian stationary sources, also states that

Ra,b(D) is realized only when{z(k)} is a Gaussian stationary random process.

Theorem 4.7(WCMSE-RDF for Gaussian Stationary Processes). Let the source{x(k)} be a zero-mean

Gaussian stationary random process with spectrumSx(e
jω) such thatSx(e

jω) > 0, a.e. on[−π, π].

Then
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(i) For anyD > 0,

Ra,b(D) =
1

2π

∫

Sx≥ a2

b2
α/4

log

(√
Sx(ejω) +

√
Sx(ejω) + [1− a

b ]α√
α

)
dω, (4.83a)

whereα > 0 is the only scalar parameter satisfying

D =
1

2π

∫

Sx≥ a2

b2
α/4

aα
√
Sx(ejω) /2√

Sx(ejω) +
√
Sx(ejω) + [1− a

b ]α
dω +

1

2π

∫

Sx<
a2

b2
α/4

bSx(e
jω)dω.

(4.83b)

(ii) The mutual information ratēI({x}; {x(k) + z(k)}) = Ra,b(D) iff {z(k)} is stationary, and has

the form

{z(k)} = {u(k)} − p(k) ∗ {x(k)}, (4.84)

where{u(k)} is a Gaussian stationary random process independent of{x(k)} having PSD

S⋆u(ejω) , max





0 ,
α

4


1− α

(√
Sx(ejω) +

√
Sx(ejω) + [1− a

b ]α
)2







, ∀ω ∈ [−π, π],

(4.85a)

and where{p(k)}k∈Z is a sequence of real numbers having discrete-time Fourier Transform

V ⋆(ejω) , min



1 ,

1
2 (a/b)α

√
Sx(ejω)

(√
Sx(ejω) +

√
Sx(ejω) + [1− a

b ]α
)



 , ∀ω ∈ [−π, π].

(4.85b)

N

Proof. It is known thatσ̆2
(N) ≥ σ̆2

(N+1)
, ∀N ∈ N, whereσ̆2

(N)
andσ̆2

(N+1)
are the smallest eigen-

values of the Toeplitz matricesKx(N) andKx(N+1) , respectively (see e.g. [159, Theorem 4.3.8]). This

result, together with Lemma4.15, in the Appendix of this chapter, and the fact thatSx(e
jω) > 0,

a.e. on[−π, π], implies that|Kx(N) | > 0, for all N ∈ N. We can then apply Lemma4.15to (4.61),

which yields

Ra,b(D) =
1

2π

∫ π

−π
max

{
0 , log

(√
Sx(ejω) +

√
Sx(ejω) + [1− a

b ]α√
α

)}
dω, (4.86a)

whereα > 0 is the only scalar parameter satisfying

D =
1

2π

∫ π

−π
min

{
bSx(e

jω) ,
aα
√
Sx(ejω) /2√

Sx(ejω) +
√
Sx(ejω) + [1− a

b ]α

}
dω. (4.86b)
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On the other hand,
√
Sx(ejω) +

√
Sx(ejω) + [1− a

b ]α√
α

≥ 1 ⇐⇒ Sx(e
jω) ≥ a2

b2
α/4 (4.87a)

and

aα
√
Sx(ejω) /2√

Sx(ejω) +
√
Sx(ejω) + [1− a

b ]α
≤ bSx(e

jω) ⇐⇒ Sx(e
jω) ≥ a2

b2
α/4. (4.87b)

By using (4.87), we have that (4.86) becomes (4.83).

In addition, it follows from Theorem4.6that a reconstruction error process{z(k)} realizesRa,b(D)

if and only if and only if it is jointly Gaussian and jointly stationary with the source. This implies

that{n(k)} in (4.84) is also a stationary Gaussian process. On the other hand, itis clear from (4.83) that

Ra,b(D) is determined only by the part ofSx(e
jω) which stands above the thresholda

2

b2 α/4. This implies

that, in a realization ofRa,b(D), the spectral components of the source outside the set of frequencies

B ,

{
ω ∈ [−π, π] : Sx(e

jω) >
a2

b2
α/4

}

must be suppressed, while spectral components of the sourcewithin the set of frequenciesB suffer

distortion, but are not absent in the reconstruction. It is also evident that, in a realization ofRa,b(D),

the reconstructed process{y(k)} , {x(k)} + {z(k)} must have a PSD which is zero∀ω /∈ B. From

this, it follows that if the statistics of the reconstruction error{z(k)} realizeRa,b(D), then the mutual

information rate between source and reconstruction can be written as

Ī({x(k)} ; {y(k)}) =
1

4π

∫

ω∈B

log

(∣∣1− V (ejω)
∣∣2 Sx(e

jω)

Su(ejω)
+ 1

)
dω, (4.88)

see5 Fact2.4in Section2.3. In (4.88),

V (ejω) ,
Sz,x(e

jω)

Sx(ejω)
,

Su(e
jω) , Sz(e

jω)− Sz,x(e
jω)2

Sx(ejω)
(4.89)

are, respectively, the linear-distortion frequency response associated to{z(k)} and{x(k)}, and the PSD

of the source-uncorrelated distortion component of{z(k)}. The fact that no spectral components of the

source associated with frequencies inB are suppressed implies that

V (ejω) 6= 1, ∀ω ∈ B,

5The expression for̄I({x(k)} ; {y(k)}) in (4.88) can be obtained by grouping the spectral components ofSu(ejω) and

Sx(ejω) into a single continuous band and then critically decimating the result to obtain PSDs which are non-zero over[−π, π].

In doing this, the mutual information rate between{x(k)} and{z(k)} is preserved, and (2.40) leads to (4.88).
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and thus, from (4.89), we obtain thatSu(e
jω) > 0, ∀ω ∈ B. In turn, the WCMSE is given by

Da,b({x(k)} , {y(k)}) =
1

2π

∫

ω∈B

aSu(ejω) + b
∣∣V (ejω)

∣∣2 dω +
1

2π

∫

ω/∈B

bSx(e
jω)dω. (4.90)

It is clear from (4.88) and (4.90) that an optimalV (ejω), i.e., one that minimizes̄I({x(k)} ; {y(k)}) for

a givenDa,b({x(k)} , {y(k)}), must be positive and real for allω. Let

Sd(e
jω) , aSu(ejω) + b

∣∣V (ejω)
∣∣2 Sx(e

jω), (4.91)

and define

DB

a,b ,
1

2π

∫

ω∈B

aα
√
Sx(ejω) /2√

Sx(ejω) +
√
Sx(ejω) + [1− a

b ]α
dω =

1

2π

∫

ω∈B

Sd(ejω)dω (4.92)

For any givenSd(ejω), it follows from (4.88), (4.92) and Theorem4.2, and from the fact thatV (ejω) <

1, ∀ω ∈ B, that the optimalSu(ejω) andV (ejω) satisfy

Su(ejω) =
Sd(ejω)

a

(
1− Sd(ejω)

bSx(ejω)

)
, ∀ω ∈ B (4.93)

V (ejω) =
Sd(ejω)

bSx(ejω)
, ∀ω ∈ B. (4.94)

Substitution of (4.93) and (4.94) into (4.88) yields

Ī({x(k)} ; {y(k)}) =
1

4π

∫

ω∈B

log




(
1− Sd(ejω)

bSx(ejω)

)2

Sx(e
jω)

Sd(ejω)
a

(
1− Sd(ejω)

bSx(ejω)

) + 1


 dω

=
1

4π

∫

ω∈B

log

(
aSx(e

jω)

Sd(ejω)
+ 1− a

b

)
dω. (4.95)

Let us now find the optimalSd(e
jω). The latter needs to be such that it minimizes (4.95) subject to

the constraint (4.92). In order to find such minimizer, we define, in relation to (4.95) and (4.92), the

Lagrangian

L , log

(
aSx(e

jω)

Sd(ejω)
+ 1− a

b

)
+ λSd(ejω), (4.96)

and notice that the optimalSd(ejω) is such that∂L

∂Sd
is zero for some multiplierλ > 0 and for allω.
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Differentiating (4.96),

∂L

∂Sd
= −

aSx(ejω)
Sd(ejω)2

aSx(ejω)
Sd(ejω) + 1− a

b

+ λ = 0

⇐⇒ − aSx(e
jω)

aSx(ejω)Sd(ejω) + [1− a
b ]Sd(ejω)2

+ λ = 0

⇐⇒ [ 1a − 1
b ]Sd(e

jω)2 + Sx(e
jω)Sd(ejω)− 1

λSx(e
jω) = 0

⇐⇒ Sd(ejω) =

√
Sx(ejω)

2[ 1a − 1
b ]

(
−
√
Sx(ejω) ±

√
Sx(ejω) + [ 1a − 1

b ]
4
λ

)

=

√
Sx(ejω)

2[ 1a − 1
b ]


 −[ 1a − 1

b ]
4
λ

−
√
Sx(ejω) ∓

√
Sx(ejω) + [ 1a − 1

b ]
4
λ




=
2
λ

√
Sx(ejω)

√
Sx(ejω) ±

√
Sx(ejω) + [ 1a − 1

b ]
4
λ

(4.97)

=
2
λ

√
Sx(ejω)

√
Sx(ejω) +

√
Sx(ejω) + [ 1a − 1

b ]
4
λ

, (4.98)

where (4.98) follows from the fact that choosing “minus” for the± sign in (4.97) yieldsSd ≥ bSx(e
jω),

∀ω ∈ [−π, π], which would contradict the optimality ofSd(ejω). Equating (4.98) with (4.92), it becomes

clear that 4
aλ = α. Thus, the optimalSd(ejω) is given by

Sd(ejω) =
1
2aα

√
Sx(ejω)

√
Sx(ejω) +

√
Sx(ejω) + [ 1a − 1

b ]
4
λ

(4.99)

Substitution of (4.99) into (4.94) shows that the linear distortion frequency response that realizesRa,b(D)

is given by

V (ejω) =

1
2aα
√
Sx(ejω)

√
Sx(ejω) +

r

Sx(ejω)+[
1
a−

1
b ]

4
λ

bSx(ejω)
, ∀ω ∈ B.

=
1
2 (a/b)α

√
Sx(ejω)

(√
Sx(ejω) +

√
Sx(ejω) + [ 1a − 1

b ]
4
λ

)

Similarly, the source uncorrelated noise present in{z(k)} that realizesRa,b(D) is obtained by substitut-

ing (4.99) into (4.93), which gives

Su(ejω) =
α

4


1− α

(√
Sx(ejω) +

√
Sx(ejω) + [1− a

b ]α
)2


 , ∀ω ∈ B.

These equations, together with the fact thatV (ejω) = 1, ∀ω /∈ B, lead directly to (4.85). This completes

the proof.
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Remark 4.4. By comparing(4.83) with (3.118) and (3.121), we see that, for any WCMSE valueD, the

SNR ofQ in an optimal feedback scalar quantizer satisfies

1

2
log(γ + 1) = Ra,b(D). (4.100)

In view of (2.60) (see page42), this implies that, for Gaussian sources and using entropycoded scalar

quantization with dither and optimal filters, the operational rate exceedsRa,b(D) by less than0.254

bits/sample. This is a generalization of the result obtained in [15], where the MSE distortion criterion is

used, to the WCMSE distortion criterion. N

4.5.1 Distortion Spectra

It is well known that in a realization of Shannon’s rate-distortion function for a Gaussian stationary

process source{x(k)} and MSE as the distortion metric, the PSD of the reconstruction error,Sz(e
jω), is

constant over the frequency bands in whichSz(e
jω) ≤ Sx(e

jω) (see (1.1) and Fig.1.1 in Section1.1).

As will be discussed next, this is not the case forRa,b(D), in general.

From (4.84), the PSD of the reconstruction error process{z(k)} is

Sz(e
jω) = Su(ejω) +

∣∣V (ejω)
∣∣2 Sx(e

jω) (4.101)

Substituting (4.85) in to this equation, and restricting hereafter, for simplicity, to the cases in which

Sx(e
jω) ≥ 1

4 (a/b)2α, a.e. on[−π, π], we obtain

Sz(e
jω) =

α

4
+

[
(ab )

2 − 1
]
α2

(√
Sx(ejω) +

√
Sx(ejω) + [1− a

b ]α
)2 (4.102)

From this equation it is clear that, unlessa = b, the PSD ofSz(e
jω) in a realization ofRa,b(D) is not

constant. This is not surprising, in view of the fact that, inthe WCMSE, source-uncorrelated distor-

tion (which gives rise toSu(ejω)), has a different importance than source-parallel distortion (given by
∣∣V (ejω)

∣∣2 Sx(e
jω)). On the other hand, this reasoning would suggest that the weighted sum

Sd(ejω) = aSu(ejω) +
∣∣V (ejω)

∣∣Sx(e
jω) (4.103)

(already defined in (4.91)), is constant. This would seem reasonable, since, inRa,b(D), the distortion

metric regards source-uncorrelated distortion power as being a/b times more “expensive” than source-

parallel error power. In terms of the geometric interpretation given in Section4.3.1, scalingD⊥ by a and

D‖ by b would turn all the ellipses in Fig.4.1-(b) into circles, which is reminiscent of what one obtains

when MSE is the distortion metric. However, and perhaps surprisingly, it can be seen from (4.99), that

the weighted spectrum in (4.103) is not constant either.
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Nevertheless, there exists a weighted combination ofSu(e
jω) and

∣∣V (ejω)
∣∣Sx(e

jω) that is constant

over[−π, π] (again, assumingSx(e
jω) ≥ 1

4 (a/b)2α, ∀ω ∈ [−π, π]). It is the following:

Su(e
jω) +

(
b
a

)2 ∣∣V (ejω)
∣∣2 Sx(e

jω) =
α

4
, (4.104)

which can be readily verified by substituting (4.85) into the left-hand side of (4.104). Interestingly, in the

weighted sum of spectral densities in (4.104), the ratio of weights of source-uncorrelated/parallel powers

is thesquareof the ratioa/b.

4.5.2 Special Cases

The Reverse Water-Filling Equations. As already noted in Section1.3.1, the WCMSE becomes the

standard MSE whena = b = 1, that is, forN -dimensional random vectorsx andy, D1,1(x.y) =

1
NE

[
‖y − x‖2

]
= MSE. As a consequence,R1,1(D) corresponds to Shannon’s rate-distortion function

when MSE is the distortion metric. This can be easily verifiedfrom Theorems4.2, 4.6 and4.7. For

example, for Gaussian stationary random sources, (4.83) becomes the well known reverse water-filling

equations, described in Section1.1, with the “water-level”θ beingα4 .

The Quadratic Gaussian RDF for Source-Uncorrelated Distortions. On the other hand, by letting

b→∞, all realizations ofRa,b(D) are such that the reconstruction error is Gaussian and independent of

the source (see Theorems4.2, 4.6and4.7). The rate-distortion function corresponding to the casea = 1

andb → ∞ has been recently introduced and characterized by the author as thequadratic Gaussian

rate-distortion function for source uncorrelated distortions, denoted byR⊥(D) [127]. We can define

R⊥(D) in terms ofRa,b(D) as

R⊥(D) , R1,∞(D),

whereR1,∞(D) , limb→∞R1,b(D). Alternatively,R⊥(D) can be defined as follows

Definition 4.4. The uncorrelated quadratic rate-distortion functionR⊥(D) for a random process source

{x(k)} is defined as

R⊥(D) = min
{z(k)} : E[x(j) z(k)]=0, ∀j,k∈Z,

limN→∞ 1
2N+1

N
P

k=−N

E[z(k)2]≤D,

Ī({x(k)} ; {x(k) + z(k)}), (4.105)

where{z(k)} is a random process. N
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(b)

z(k)

z̃(k)

z(k)

(a)

y(k)
x(k) z̃(k)P (z) x(k) P (z)P (z)

x(k)
1

P (z)

x̃(k) y(k)

Figure 4.4: (a): Frequency weighting of the error z(k); (b): Equivalent scheme.

From (4.83), and takinga = 1, b =∞, we obtain

R⊥(D) =
1

2π

π∫

−π

log

(√
Sx(ejω) +

√
Sx(ejω) + α√

α

)
dω, (4.106)

whereα > 0 is the only scalar parameter satisfying

D =
1

4π

π∫

−π

α
√
Sx(ejω)√

Sx(ejω) +
√
Sx(ejω) + α

dω. (4.107)

Also,R⊥(D) is achieved if and only if the error{z(k)} is a Gaussian stationary process, independent of

the source, and having PSD

Sz(e
jω) =

1

2

(√
Sx(ejω) + α −

√
Sx(ejω)

)√
Sx(ejω) , a.e. on[−π, π]. (4.108)

R⊥(D) can be easily extended to consider frequency weighting of the source-uncorrelated error

{z(k)}. For this purpose, consider the setting depicted in Fig.4.4-(a). In this scheme, the error frequency

weighting filterP (z) is bi-proper, stable, and stably invertible. The sequence{z̃(k)} is the frequency

weighted reconstruction error. Associated toP (z), we define define the frequency weighted distortion

metric

J(P (z), {z(k)}) , lim
ℓ→∞

1

ℓ

ℓ∑

k=1

E
[
z̃(k)2

]
, where (4.109)

z̃(k) , P (z) z(k), ∀k ∈ Z. (4.110)

An equivalent scheme is shown in Fig.4.4-(b). SinceP (z) is invertible, we have that

Ī({x̃(k)} ; {x̃(k) + u(k)}) = Ī({x(k)} ; {x(k) + z(k)}). (4.111)

Thus, under a constraint on the maximum average power of{z̃(k)}, minimizing Ī({x̃(k)} ; {x̃(k) +

z̃(k)}) over all processes{z̃(k)} is equivalent to minimizinḡI({x(k)} ; {x(k)+z(k)}) over all processes

{z(k)}. Taking{x̃(k)} as the source and{z̃(k)} as the noise in (4.106) and (4.107), and noting that
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Sx̃(e
jω) =

∣∣P (ejω)
∣∣2 Sx(e

jω), it follows that the frequency weighted version ofR⊥(D) is

R⊥(D) =
1

2π

π∫

−π

log



∣∣P (ejω)

∣∣√Sx(ejω) +

√
|P (ejω)|2 Sx(ejω) + α

√
α


 dω,

(4.112)

whereα > 0 is the only scalar parameter satisfying

D =
1

4π

π∫

−π

α
∣∣P (ejω)

∣∣√Sx(ejω)

|P (ejω)|
√
Sx(ejω) +

√
|P (ejω)|2 Sx(ejω) + α

dω.

(4.113)

Also, sinceSz̃(e
jω) =

∣∣P (ejω)
∣∣2 Sz(e

jω), we have from (4.108) thatR⊥(D) is achieved if and only if

the error{z(k)} is a Gaussian stationary process, independent of the source, and having PSD

Sz(e
jω) =

1

2

(√
|P (ejω)|2 Sx(ejω) + α −

∣∣P (ejω)
∣∣√Sx(ejω)

) √
Sx(ejω)

|P (ejω)| , a.e. on[−π, π].

(4.114)

Notice that the expression for the frequency weighted MSE given by (4.113) is identical to that in (3.143),

obtained for the optimal perfect reconstruction feedback quantizer under the Linear Model. Notice also

that here, again,12 log(γ+1) in (3.142) plays the same role as the RDF, this timeR⊥(D) in (4.112). (This

correspondence will be studied in detail and extended in Chapter5.) From this and from (2.60) (page42),

it follows that for Gaussian sources, an FQ using an entropy coded scalar quantizer with subtractive and

the optimal filters characterized by (3.140), attains an operational bit-rate that exceedsR⊥(D) by less

than0.254 bits/sample.

One of the attractive aspects ofR⊥(D) is that it is the asymptotically achievable lower bound to the

bit-rate ofanyED pair satisfying the following two conditions: a) quantization errors are uncorrelated

to the source; and b) the transfer function from source to reconstruction is unity (perfect-reconstruction

property) [127, 160]. In particular, whenever a PR subband coder is analyzed assuming quantization

errors uncorrelated to the source (the Linear Model), the difference between the bit-rate of the subband

coder andR⊥(D), for a given distortionD, can be used as a measure of rate-distortion efficiency. This

performance assessment criterion can be seen as an alternative to thecoding gaincriterion. The latter

has been widely used in subband coding literature, e.g., see[55, 59, 86]. Unlike the coding gain, the

performance gap of a PR source coder, satisfying condition (a), with respect toR⊥(D), is an absolute

rate-distortion efficiency measure. This measure, insteadof telling one how much better than PCM a

given source coder is, tells one how far the latter is from thebest conceivable source coder.

Another interesting feature ofR⊥(D) is that, as shown by the author in [160],R⊥(D) can be realized
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using only causal filters. Moreover, by using entropy-codedsubtractively dithered scalar quantization,

it is possible to obtain a bit-rate that exceedsR⊥(D) by not more than0.254 bits/sample, with zero

delay from source to reconstruction [160]. This property makes it possible to extendR⊥(D) to situations

wherein linear, time invariant feedback, exists between reconstruction and source. This will be the subject

of Section4.9.

It is easy to verify thatR⊥(D) is the only rate-distortion function within theRa,b(D) family that

can be realized causally. To see this, notice that the optimal linear distortion frequency responseV (ejω)

in (4.85b) is real valued and symmetric. Hence, the signal transfer function necessary to realizeRa,b(D),

which has frequency response1 − V (ejω), can only be implemented using non-causal filters. The only

exception arises whenb → ∞. In this case, the optimalV (ejω) ≡ 0 (see (4.85b)), and the optimal

signal transfer function is unity, which can always be realized with causal filters.

4.6 WCMSE-RDF For Vector Processes

Here we extend the results of sections4.3and4.4 to vector processes. For a Gaussian stationary vector

process source{x(k)}, wherex(k) ∈ RN , ∀k ∈ Z, reconstructed as the process{y(k)}, the reconstruc-

tion error is the process

{z(k)} , {y(k)− x(k)}.

If {x(k)} and{z(k)} are jointly w.s.s., then the source-uncorrelated distortion is given by

{u(k)} , {z}+ V (z){x(k)}, (4.115)

where thelinear distortion transfer function matrixV (z) is defined as

V (z) , −Kz,x(z)Kx(z)−1. (4.116)

From (4.115), the source-uncorrelated and source-parallel distortion terms that comprise the covariance

matrix of{z(k)} are readily found to be, respectively,

D⊥
, Ku,

D‖ , V (z)Kx(k)V (z)H = Kz,x(z)Kx(z)Kz,x(z)H .

Although for vector process sources the reconstruction error that realizesRa,b(D) turns out to be

jointly stationary with the source (as will be shown in Theorem4.8), we cannot “a priori” assume station-

arity when definingRa,b(D). For this purpose, we introduce the following notation for aconcatenation
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of the vectors{x(k)}ℓk=−ℓ of a process{x(k)} into a single vector of length(2ℓ+ 1)N :

x(ℓ) ,
[
x(−ℓ)T x(−ℓ+ 1)T · · · x(ℓ)T

]T
. (4.117)

Using this notation, the WCMSE for vector sources is defined as the following limit:

Da,b({x(k)}, {y(k)} , lim
ℓ→∞

Da,b(x(k),y(k)), (4.118)

whereDa,b(x(k),y(k)) corresponds to the WCMSE for vectors defined in (4.60).

We can now define the WCMSE-Rate-Distortion function for a vector process source{x(k)}, as

follows.

Definition 4.5. For a vector random process source{x(k)}, the WCMSE-RDF is defined as

Ra,b(D) , lim
ℓ→∞

min
z(ℓ):Da,b(x(ℓ) , x(ℓ)+z(ℓ))≤D

Ī (x(ℓ) ; x(ℓ) + z(ℓ)) . (4.119)

N

Theorem 4.8. Let {x(k)} be a Gaussian stationaryN -dimensional vector process with zero mean and

covariance matrixKx(z). Let the eigenvalue decomposition ofKx(z) be

Kx(z) = Q(z) diag {λi(z)}Q(z)H , (4.120)

where{λi(z)}Ni=1 are the eigen-functions ofKx(z) andQ(z) is a unitary transfer function. Then

Ra,b(D) =

N∑

i=1

1

2π

∫

λi(ω)≥ a2

b2
α/4

ln

(√
λi(ω) +

√
λi(ω) + [1− a

b ]α√
α

)
dω, (4.121a)

whereα > 0 is the unique scalar satisfying

D =
1

2π

N∑

i=1

(∫

λi(ω)≥ a2

b2
α/4

aα
√
λi(ω) /2√

λi(ω) +
√
λi(ω) + [1− a

b ]α
dω +

∫

λi(ω)< a2

b2
α/4

bλi(ω)dω

)
.

(4.121b)

In addition,Ra,b(D) is achieved if and only if the source-uncorrelated distortion has covariance matrix

K⋆
u(ejω) = Q(ejω) diag

{
S⋆ui

(ejω)
}

Q(ejω)H , (4.121c)

and the frequency response of the linear distortion transfer matrix (see(4.116)) is

V ⋆(ejω) = Q(ejω) diag
{
V ⋆i (ejω)

}
Q(ejω)H , (4.121d)
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where

S⋆ui
(ejω) , max





0 ,
α

4


1− α

(√
λi(ejω) +

√
λi(ejω) + [1− a

b ]α
)2







, ∀ω ∈ [−π, π]

(4.121e)

V ⋆i (ejω) , min





1 ,
1
2 (a/b)α

√
λi(ejω)

(√
λi(ejω) +

√
λi(ejω) + [ 1a − 1

b ]
4
λ

)




. ∀ω ∈ [−π, π] (4.121f)

Proof. Let us define the stationary vector process

v(k) , Q(z)Hx(k), (4.122)

which has mutually independent elements, each of them having PSDλi(ejω), i = 1, . . . , N . Define also

the vector processes

w(k) , Q(z)Hy(k)

n(k) , w(k)− v(k),

so that

y(k)− x(k) = Q(z)n(k). (4.123)

SinceQ(z) is unitary, we have that

Da,b({x(k)}, {y(k)}) = Da,b({v(k)}, {w(k)}),

Ī({x(k)}; {y(k)}) = Ī({v(k)}; {w(k)}),

and therefore the WCMSE-RDFs for{x(k)} and{v(k)} are equal.

On the other hand, since the processes in{v(k)} are mutually independent, it follows that, for every

ℓ > 1, the matrix of eigenvectors ofKv(ℓ) has block-diagonal structure. Hence, from Theorem4.6, the

vectorn(ℓ) achievingRa,b(D) for v(ℓ) is Gaussian and is such thatKn(ℓ),v(ℓ) andKn(ℓ) are block-

diagonal. This means that in order to achieveRa,b(D), ni(k) must be independent ofnj(k) and ofvj(k),

for everyk ∈ Z and for everyj 6= i ∈ Z. Therefore, whenRa,b(D) is achieved, the following holds

Ī({v(k)}; {w(k)}) =

N∑

i=1

Ī({vi(k)}; {wi(k)}), (4.124)

see Lemma4.4, and

Da,b({v(k)}, {w(k)}) =

N∑

i=1

Da,b({vi(k)}, {wi(k)}). (4.125)
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Thus,Ra,b(D) can be regarded as a rate distortion function of a product source with a sum distortion

metric. Since, in addition, the scalar processes{vi(k)} are mutually independent, we can apply Theo-

rem4.5, which yields that

Ra,b(D) =

N∑

i=1

R
(i)
a,b(di) (4.126a)

D =

N∑

i=1

di, (4.126b)

where the distortions{di}must satisfy

∂

∂di
R

(i)
a,b(di)− s = 0, (4.127)

for some slopes < 0, if ∂
∂dR

(i)
a,b(d

max
i ) < s, wheredmaxi , min{d : R

(i)
a,b(d) = 0}, or else

di = dmaxi .

From (4.83),

R
(i)
a,b(di) =

1

2π

∫

g2≥ a2

b2
α/4

ln
(
g(ω) +

√
g(ω)2 + [1− a

b ]α
)
− 1

2
lnα dω, (4.128a)

whereg(ω)2 , λi(e
jω), ∀ω ∈ [−π, π], andα > 0 is the unique scalar parameter satisfying

di =
1

2π

∫

g2≥ a2

b2
α/4

aαg(ω)/2

g(ω) +
√
g(ω)2 + [1− a

b ]α
dω +

1

2π

∫

g2< a2

b2
α/4

bg(ω)2(ejω)dω. (4.128b)

Differentiating (4.128a) with respect toα, we obtain:

∂

∂α
R

(i)
a,b =

1

2π

∫

g2≥ a2

b2
α/4

[1− a
b ]

2
√
g2+[1−a

b ]α

g +
√
g2 + [1− a

b ]α
− 1

2α
dω

=
1

2π

∫

g2≥ a2

b2
α/4

[1− a
b ]α−

(
g +

√
g2 + [1− a

b ]α
)√

g2 + [1− a
b ]α

2α
(
g +

√
g2 + [1− a

b ]α
)√

g2 + [1− a
b ]α

dω

=
1

2π

∫

g2≥ a2

b2
α/4

−g
(
g +

√
g2 + [1− a

b ]α
)

2α
(
g +

√
g2 + [1− a

b ]α
)√

g2 + [1− a
b ]α

dω

=
1

2π

∫

g2≥ a2

b2
α/4

−g
2α
√
g2 + [1− a

b ]α
dω.



4.7. IMAGE PROCESSING EXAMPLE 143

On the other hand, differentiation of (4.128b) with respect toα yields

∂

∂α
di =

a/2

2π

∫

g2≥ a2

b2
α/4

g
(
g +

√
g2 + [1− a

b ]α
)
− αg [1− a

b ]

2
√
g2+[1− a

b ]α

(g +
√
g2 + [1− a

b ]α )2
dω

=
a/2

2π

∫

g2≥ a2

b2
α/4

2
(
g +

√
g2 + [1− a

b ]α
)√

g2 + [1− a
b ]α − [1− a

b ]α

2(g +
√
g2 + [1− a

b ]α )2
√
g2 + [1− a

b ]α
g dω

=
a/2

2π

∫

g2≥ a2

b2
α/4

2g2 + 2g
√
g2 + [1− a

b ]α + [1− a
b ]α

2(g +
√
g2 + [1− a

b ]α )2
√
g2 + [1− a

b ]α
g dω

=
a/2

2π

∫

g2≥ a2

b2
α/4

(g +
√
g2 + [1− a

b ]α )2

2(g +
√
g2 + [1− a

b ]α )2
√
g2 + [1− a

b ]α
g dω

=
a/2

2π

∫

g2≥ a2

b2
α/4

g

2
√
g2 + [1− a

b ]α
dω.

Therefore,

∂R
(i)
a,b(di)

∂di
=
∂R

(i)
a,b

∂α

/∂di
∂α

= − 2

aα
. (4.129)

This result, together with (4.123), (4.128) and (4.126), leads directly to (4.121),completing the proof.

4.7 Image Processing Example

The purpose of this section is threefold. First, it providesan example illustrating the applicability of the

results already presented in this chapter to the encoding ofdigital images. Secondly, it allows the reader

to literally see the meaning of the WCMSE rate-distortion function in a more tangible manner. Finally,

it supports the claim made at the end of Section4.3.2, that in lossy image compression applications the

perceptual weight of source-parallel distortion is greater than that of source-uncorrelated distortion. With

this aim in mind, the linear distortion and additive source-independent noise required to realizeRa,b(D)

were applied to two black and white images. The results are shown in Fig.4.5and4.6. More specifically,

for a fixed rate of0.05 bits/sample, fixinga = 1, and for several values ofb, each image was distorted

according to the following steps:

1. Obtain the 2-dimensional DFT of the image.

2. Regard the DFT coefficients as samples of the power spectral density (PSD) of a w.s.s. vector

process.
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3. Plug the DFT coefficients into the “water filling” formula (4.121a) in place for the source PSD.

Find the “water level” parameterα numerically.

4. Useα to find, for each frequency component, the gains that are required to realizeRa,b(D), which

are given by one minus the right hand side of (4.121f). These gain values correspond to samples

of the signal transfer function required to realizeRa,b(D).

5. Multiply each DFT coefficient of the source by its corresponding gain. Apply the inverse 2-D DFT

to the result. This yields the linearly distorted image.

6. In order to generate the source-parallel noise similar tothat obtained by subtractively dithered

uniform quantizers, create an image with i.i.d. pixels, uniformly distributed, and obtain its 2-D

DFT coefficients.

7. Multiply each of these coefficients by the the squared rootof the right hand side of (4.121e), using

the value ofα found above, so as to obtain the noise PSD of a realization ofRa,b(D). Apply the

inverse 2-D DFT to the result. This yields approximately a realization of the source uncorrelated

distortion in the pixel domain.

8. Add the source uncorrelated distortion to the linearly distorted image.

In each figure, the top left image corresponds to the original. We note again that all images were

distorted using the same target bit-rate. As expected, images distorted using small values ofb suffer

pronounced blurring and very mild additive noise. For the casesa = b, the result represents what is

obtained when MSE is minimized under a constraint in the bit-rate. As the value ofb is increased, edges

appear sharper and image contrast improves, at the expense of increased additive noise.

It is the opinion of the author and several other observers that in Figs.4.5and4.6the most acceptable

images were distorted using a value ofb greater thana. This suggests that, for a fixed rate, the perceptual

effect of linear distortion in near-optimal image compression is more objectionable than the effect of

source uncorrelated noise.

4.8 Achievability

In this section, a proof of achievability for the WCMSE rate-distortion function is provided, for the case

in which the source is a scalar Gaussian random process. The proof is based upon the use of optimal

entropy coded dithered lattice quantizers(ECDLQ), which have been described in, e.g., [126]. We begin

with a brief review of some of the main results related to these quantizers.
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Original a = 1, b = 0.5 a = 1, b = 1

a = 1, b = 2 a = 1, b = 3 a = 1, b = 4

a = 1, b = 8 a = 1, b = 16 a = 1, b = 32

Figure 4.5: Image linearly distorted plus filtered uniformly distributed and independent

noise, in approximate accordance with Ra,b(D) for several values of the parameter b and

for a fixed rate Ra,b = 0.05 bits/sample.
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Original a = 1, b = 0.5 a = 1, b = 1

a = 1, b = 1.5 a = 1, b = 2 a = 1, b = 3

a = 1, b = 4 a = 1, b = 8 a = 1, b = 16

Figure 4.6: Image linearly distorted plus filtered uniformly distributed and independent

noise, in approximate accordance with Ra,b(D) for several values of the parameter b and

for a fixed rate Ra,b = 0.05 bits/sample.
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4.8.1 Background on Dithered Lattice Quantization

A randomized lattice quantizer of dimensionN is anN -dimensional lattice quantizerQN with sub-

tractive ditherδ, followed by entropy encoding. The ditherδ ∼ U(V0) is uniformly distributed over a

Voronoi cellV0 of the lattice quantizer. The idea of subtractive dither is to add the dither to the source

prior to quantization, and then subtract the dither from theoutput of the quantizer to obtain the recon-

struction vector. More precisely, the reconstructed output is given by

y = QN (x + δ)− δ. (4.130)

By doing this, the quantization error

e = y − x = QN (x + δ)− δ − x, (4.131)

is distributed as−δ and has covariance matrix

Ke = ǫ · I (4.132)

More importantly,e is independent ofx. Furthermore, it has been shown in [126] that the coding rateof

the quantizer, i.e.

RQN , 1
NH(QN (x + δ)|δ) (4.133)

can be written as the mutual information between the sourcex and its reconstructiony. More precisely,

RQN =
1

N
I(x;y) =

1

N
I(x;x + e),

and the quadratic distortion per dimension is given by1
NE

[
‖y − x‖2

]
= 1

NE
[
‖e‖2

]
= ǫ

N , see (4.132).

It has furthermore been shown that whenδ is white, there exists a sequence of lattice quantizers

{QN} where the quantization error (and therefore also the dither) tends to be approximately Gaussian

distributed (in the Kullback-Leibler divergence sense) for largeN . Specifically, lete have PDFfe(·), and

let eG be Gaussian distributed with the same mean and covariance ase. ThenlimN→∞
1
ND(fe‖feG) =

0 with a convergence rate oflog(N)
N , if the sequence{QN} is chosen appropriately [161].

In the next section we will be interested in the case where thedither is not necessarily white. By

shaping the Voronoi cells of a lattice quantizer whose dither δ is white, we also shapeδ, obtaining a

coloured ditherδ′. This situation was considered in detail in [161] from wherewe obtain the following

lemma (which was proven in [161] but not formally stated in the form of a lemma).

Lemma 4.9. Lete ∼ U(V0) be white, i.e.e is uniformly distributed over the Voronoi cellV0 of the lattice

quantizerQN andKe = ǫI. Furthermore, lete′ ∼ U(V′
0), whereV′

0 denotes the shaped Voronoi cell
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V′
0 = {x ∈ RN : M−1x ∈ V0} andM is some invertible linear transformation. Denote the covariance

of e′ byKe′ = MMT ǫ. Similarly, leteG ∼ N (0,KeG) having covariance matrixKeG = Ke and let

e′G ∼ N (0,Ke′
G
) whereKe′

G
= Ke′ . Then there exists a sequence of shaped lattice quantizers such

that
1

N
D(fe′‖fe′

G
) = O (log(N)/N) . (4.134)

N

Proof. The divergence is invariant to invertible transformationssinceh(e′) = h(e) + log2(|M |). Thus,

D(fe′‖fe′
G
) = D(fMe‖fMeG) = D(fe‖feG) for anyN .

4.8.2 Achievability ofRa,b(D)

In order to establish the achievability ofRa,b(D), the following lemma is needed:

Lemma 4.10. Let x, x′, z andz′ be mutually independent random vectors. Letx′ andz′ be arbitrarily

distributed, and letx andz be Gaussian having the same mean and covariance asx′ andz′, respectively.

Then

I(x′;x′ + z′) ≤ I(x;x + z) +D(z′‖z). (4.135)

N

Proof.

I(x′;x′ + z′) = h(x′ + z′)− h(z′)
(a)
= h(x + z) − h(z) +D(z′‖z)−D(x′ + z′‖x + z) (4.136)

≤ I(x;x + z) +D(z′‖z),

where(a) stems from the well known resultD(x′‖x) = h(x)− h(x′), see, e.g., [63, p. 254].

Remark 4.5. For a uniform scalar subtractively dithered quantizerQ, the net quantization noisee is

uniformly distributed. In this case, ifeG ∼ N (0, σ2
e ), thenD(e ‖ eG) = 0.254 bits. Hence, the scalar

entropy of the quantized output conditioned on the dither exceeds thescalarmutual information obtained

whenQ is replaced by a channel with Gaussian AWN of varianceσ2
e by0.254 bits. N

We can now prove the achievability ofRa,b(D).
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Theorem 4.11. [Achievability ofRa,b(D)] Let x be an infinite length Gaussian random vector with zero

mean. Define the sequence of vectors

x(N) ,
[
x(−N−1

2 ), x(−N−1
2 + 1), . . . , x(N−1

2 )
]T
, N ∈ {2j + 1}∞j=0 (4.137)

Denote the covariance matrix ofx(N) byKx(N) . If

lim
N→∞

max {λi(Kx(N))} <∞, (4.138)

thenRa,b(D) is achievable for allD > 0. N

Proof. Let the eigenvalue decomposition ofKx(N) be

Kx(N) = QN diag
{
σ2
N,k

}
QT
N , k = 1, 2, . . . , N. (4.139)

From Theorem4.6, the WCMSE-rate-distortion function forx(N), sayR(N)
a,b (D), is achieved when the

reconstructed vectory(N) has the form

y(N) = u(N) + (I − V N )x(N), (4.140)

whereu(N) ∈ RN is a zero mean, Gaussian random vector with covariance matrix satisfying (4.62a), and

where the linear distortion matrixV N ∈ RN×N satisfies (4.62c), assuming the source isx(N). These

covariance matrix ofu(N) and the matrixV N have eigenvalue decomposition

Ku(N) = QN diag
{
η
(N)
k

}
QT
N (4.141)

V N = QN diag
{
p
(N)
k

}
QT
N , (4.142)

where

p
(N)
k ≤ 1, ∀k ∈ {1, . . . , N}

p
(N)
k = 1 ⇐⇒ ηNk = 0 ⇐⇒ σ2

N,k ≤ 4(a/b)2α(N), ∀k ∈ {1, . . . , N}, (4.143)

and whereα(N) > 0 is the scalar that satisfies (4.61b) when the eigenvalues of the source areσ2
N,k.

Notice that, if the latter are fixed, thenα(N) is a function only ofD. To make this dependence explicit,

we write

α(N) = α(N)(D) (4.144)

The realization ofRa,b(D) described by (4.140) can also be accomplished as follows: We first multiply

the sourcex(N) by QT
N , obtaining the random vector

x̄(N) , QT
N x(N), (4.145)
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which has covariance matrixK x̄(N) = diag
{
σ2
N,k

}
. Then, thek-th element of̄x(N) is multiplied by a

scalar gain1− p(N)
k , for eachk ∈ {1, . . . , N}, yielding the random vector

x̃(N) , diag
{
1− p(N)

k

}
x̄(N). (4.146)

A Gaussian noise vectore(N)
G , independent ofx(N) and having covariance matrixK

e
(N)
G

= diag{η(N)
k },

is added tõx(N), which yields

ỹ(N) = e
(N)
G + x̃(N). (4.147)

Finally, ỹ(N) is multiplied by the unitary matrixQN , yielding the reconstructiony(N). More precisely,

QN ỹ(N) = QN

[
e
(N)
G + x̃(N)

]
= QN

[
e
(N)
G + diag

{
1− p(N)

k

}
x̄(N)

]
(4.148)

= QN

[
e
(N)
G + diag

{
1− p(N)

k

}
QT
N x(N)

]
(4.149)

= u(N) + (I − V N )x(N) = y(N). (4.150)

We also have that

R
(N)
a,b (D) = Ī(x(N);y(N)) = Ī(x(N); ỹ(N)) = Ī(x̄(N); ỹ(N)) = Ī(x̃(N); x̃(N) + e

(N)
G ) (4.151)

Now, instead of adding the Gaussian noisee
(N)
G to x̃,(N), we can apply an ECDLQ to quantize the non-

zero elements of̃x(N). Denote the number of elements inx̃(N) having non-zero variance by the function

L(N,D) (see (4.143) and (4.144)). Then, the ECDLQ would have dimensionL ≤ N . If the cell of

this ECDLQ is shaped so that the source-independent error introduced by it, namelye(N), has the same

covariance matrix as the vector formed by theL non-zero-variance elements ofe
(N)
G , then the end-to-end

WCMSE would be the same as the one obtained withe
(N)
G , i.e., it would be equal toD. Denote this

quantizer byQL. From (4.133), the entropy rate ofQL would be

RQL(D) ,
1

N
H(QL(x̃

(N)
L + δL)|δL) = Ī(x̃N ; x̃(N) + e(N)) (4.152)

wherex̃(N)
L is the vector formed by removing the zero-variance elementsof x̃(N). Subtracting (4.151)

from (4.152), we have that

RQL(D)−R(N)
a,b (D) = Ī(x̃N ; x̃(N) + e(N))− Ī(x̃N ; x̃(N) + e

(N)
G ). (4.153)

Applying Lemma4.10to the latter,

1

N
H(QL)−R(N)

a,b (D(N)) ≤ D(e(N)‖e(N)
G ) (4.154)
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If, for a givenD > 0,

lim
N→∞

L(N,D) =∞ (4.155)

holds, thenL→∞ asN →∞, and thus from Lemma4.9we have thatD(e(N)‖e(N)
G )→ 0 asN →∞.

Therefore,limN→∞RQL(D) = Ra,b(D). Else, if for a givenD we have thatlimN→∞ L(N,D) <∞,

and if (4.138) holds, then̄I(x̃N ; x̃(N)+e(N)), and thus̄I(x̃N ; x̃(N)+e
(N)
G ), tends to zero asN →∞. In

view of (4.152) and (4.151), this implies that0 = limN→∞RQL(D) = limN→∞R
(N)
a,b (D) = Ra,b(D).

This completes the proof.

Remark 4.6(Achievability for other Gaussian sources).

1. For zero mean stationary Gaussian random sources,Ra,b(D) is achieved by takingx in Theo-

rem4.11to be the complete input process.

2. For vector processes, the achievability ofRa,b(D) follows by buildingx in Theorem4.11from the

concatenation of infinitely many consecutive source vectors.

4.9 R⊥(D) Within Feedback Loops

In this section we extend the definition and results regarding R⊥(D) to cases where a feedback path

exists between the reconstruction and the source. We restrict the analysis to stationary processes only.

The situation under study is depicted in Fig.4.7. In this setting,{z(k)} and{r(k)} are two random

processes external to the loop. The transfer functionsG1(z), G2(z), G3(z) are linear, causal, and such

that

G(z) , G1(z)G2(z)G3(z), (4.156)

i.e.,G(z) has a delay of at least one sample.

The transfer functionsG1(z), G2(z), G3(z) arenot necessarily stable. More specifically, we only

requireG(z) to be such that1/(1 + G(z)) is stable, i.e., such that the closed loop system is stable.

Our motivation to consider possibly unstable transfer functions stems from the fact that one of the main

applications of feedback is precisely the stabilization ofopen-loop unstable systems [69].

In this setting, we regard the process{x(k)} as the source, and the process{y(k)} is the reconstruc-

tion. Before we extend the definition ofR⊥(D) for this scheme, we will need to adapt the notions of rate

and distortion to feedback scenarios. This is done next.
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z(k)

x(k) y(k)
G2(z)

G3(z)

G1(z)r(k)

Figure 4.7: Source {x(k)} and reconstruction {y(k)} within the external feedback loop

closed by the strictly causal transfer function G3(z).

4.9.1 The Directed Version ofR⊥(D)

The existence of a feedback path from{y(k)} to {x(k)} imposes the need to modify three fundamental

aspects in the definition ofR⊥(D):

1. the notion of mutual information to use;

2. the extent of the distortion un-correlation constraint;and

3. the signal whose variance is to be regarded as the distortion.

Each of these aspects is discussed below.

Directed Mutual Information When there is feedback from{y(k)} to {x(k)}, the standard no-

tion of mutual information needs to be replaced by that ofdirected mutual information[162]. In

our case, this means thatR⊥(D) needs to be redefined by using thedirected mutual information rate

Ī({x(k)} → {y(k)}) instead ofĪ({x(k)} ; {y(k)}). For two random vectorsx, y ∈ RN , thedirected

mutual informationfrom x to y is defined as [162]:

I(x→ y) ,

N∑

k=1

I(xk1 ; y(k)| yk−1) (4.157)

For random processes, the above definition can be extended tothedirected mutual information rate

Ī({x(k)}→{y(k)}) , lim
ℓ→∞

1

ℓ

ℓ∑

k=1

I(xk1 ; y(k)| yk−1
1 ). (4.158)

If y depends causally onx, and if there is no feedback fromy to x, then the following Markov chain

holds:

xj1 → xk1 → yk1 , 1 ≤ k ≤ j ≤ N. (4.159)

When Markov chain (4.159) holds, we have that

I(x→ y) = I(x;y). (4.160)
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Consequently, mutual and directed mutual informations betweeny andx are equal ify depends causally

onx and there exists no feedback from the former to the latter.

Un-correlation Constraint. The second fundamental aspect ofR⊥(D) that needs to be modified

whenever feedback is in place is the requirement of un-correlation between noise{z(k)} and source

{x(k)}. Assuming that{z(k)} is uncorrelated to{r(k)}, and without feedback (i.e., ifG3(z) ≡ 0), one

would have{x(k)} uncorrelated with{z(k)}. On the contrary, when there is feedback, the processes

{x(k)} and{z(k)} are not uncorrelated, since each elementx(k) contains past samples of the process

{y(k)} = {x(k)} + {z(k)}. However, due to the linearity and (strict) causality ofG(z), we have that if

{r(k)} and{z(k)} are uncorrelated, then thek-th sample of the innovations process of{z(k)}, namely

w(k), is indeed uncorrelatedto each of the samples{x(i)}i≤k, i.e.,

E [w(k) x(i)] = 0, ∀i ∈ Z : i ≤ k, ∀k ∈ Z. (4.161)

We shall use this condition as the key constraint in our “feedback version” ofR⊥(D), instead of requiring

that{x(k)} and{z(k)} be uncorrelated.

Weighted Quadratic Distortion. In the general scheme depicted in Fig.4.7, the forward channel

{y(k)} = {x(k)} + {z(k)} forms part of a bigger system. For this reason, it makes senseto con-

sider as a distortion metric the variance of, not only of{z(k)}, but optionally, the variance of{z(k)} as

it appears in other signals in the system, in the form of noise. This can be accomplished by considering

the frequency weighting distortion metricJ(P (z), {z(k)}) defined in (4.109). In this case, the error

weighting transfer functionP (z) represents the transfer function from{z(k)} to some given node in the

system.

Based upon the above observations, we extend Definition4.4 for the case of stationary random pro-

cesses with feedback, as follows:

Definition 4.6. In relation to the channel with feedback shown in Fig.4.7, and for a given transfer

functionP (z), we define thequadratic rate-distortion function with source-uncorrelated distortion

innovationsas

R
−→⊥ (D) , min

{z(k)}:J(P (z),{z(k)})≤D,

E[x(k) w(j)]=0,∀j≥k∈Z

Ī({x(k)}→{x(k) + z(k)}), D > 0, (4.162)

where{w(k)} is the innovations process underlying{z(k)}, and where the frequency-weighted distortion

metricJ(P (z), {z(k)}) is as in(4.109). N
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4.9.2 The Gaussian Case

In this section we characterizeR
−→⊥ (D) for the cases where{r(k)} in Fig. 4.7 is a Gaussian stationary

process. The requirement of finite-delay imposed by feedback precludes the possibility of quantizing

infinitely long sequences of samples ofx. Hence, the achievability for this minimum information rate

seems impossible (unless infinitely many feedback loops operate in parallel, which would allow one to

use infinite-dimensional vector quantization without introducing delay). Nevertheless, it is possible to

get at least as close as0.254 bits/sample of this minimum rate by using subtractively dithered scalar

quantization, see Remark4.5.

The analysis will be carried out on the system depicted in Fig. 4.8. This system is equivalent to the

one shown in Fig.4.7 in terms of the signal transfer functions between{r(k)}, {x(k)} and{y(k)}. In

particular, it can be easily verified that

x(k) =
G1

1 +G(z)
r(k)− G(z)

1 +G(z)
z(k), (4.163)

as before, whereG(z) is as defined in (4.156). Notice also that between{r̃(k)} and{y(k)} extends a

perfect-reconstruction noise-shaping system, which can be seen as a special case of the source coders

studied in Chapter3.

G(z)

1+G(z)

r̃(k) x(k)
y(k)

z(k)

G1(z)

1+G(z)
r(k)

Figure 4.8: System equivalent, from {r(k)} to {x(k)} and {y(k)}, to the one shown in

Fig. 4.7. The transfer function G(z) corresponds to G1(z)G2(z)G3(z).

The following is a key theorem for subsequent results, and the first main result of this section. It

states the relationship between the directed mutual information from{x(k)} to {y(k)} and the mutual

information between{r̃(k)} and{y(k)}. The main difficulty in the associated problem arises from the

possible instability ofG(z).

Theorem 4.12(Inner and Outer Information Rates Differ by the Entropy Gain of (1 +G(z))−1).

Consider the system depicted in Fig.4.8, where{r̃(k)} and{z(k)} are random processes. Assume that

the initial state ofG(z) is a random vector having finite covariance matrix. IfĪ({r̃(k)} ; {y(k)}) is
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bounded, then

Ī({x(k)} → {y(k)}) ≥ Ī({r̃(k)} ; {y(k)}) +
∑

pG
i ∈P

log
∣∣∣pGi
∣∣∣ , (4.164)

whereP is the set of unstable poles ofG(z). Equality is achieved if{r̃(k)} and{z(k)} are independent.

N

Proof. For any integersm, ℓ ≥ 1, we have that

I(xℓ1 → yℓ1)− I(r̃m1 ; ym1 )

(a)
= I(xℓ1 → yℓ1)− I(r̃m1 → ym1 )

=

ℓ∑

k=1

[
h(y(k)| yk−1

1 )− h(y(k)| yk−1
1 , xk1)

]
−

m∑

j=1

[
h(y(j)| yj−1

1 )− h(y(j)| yj−1
1 , r̃j1)

]

=

m∑

j=1

h(y(j)| yj−1
1 , r̃j1)−

ℓ∑

k=1

h(y(k)| yk−1
1 , xk1)− h(ym1 ) + h(yℓ1), (4.165)

where(a) follows from the fact that there exists no feedback from{y(k)} to {r̃(k)}. Define

n(k) , y(k)− r̃(k), ∀k ∈ Z. (4.166)

Notice that{n(k)} is completely (and causally) determined by{z(k)}, since

n(k) =
1

1 +G(z)
z(k) (4.167)

and since 1
1+G(z)

is biproper. In addition, if{z(k)} depends on{r̃(k)}, it does it causally, and without

feedback from{z(k)} to {r̃(k)}. Therefore, the following Markov chain holds:

r̃∞1 → r̃k1 → zk1 → nk1 . (4.168)
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We then have that, for everym, ℓ ≥ 1,

m∑

j=1

h(y(j)| yj−1
1 , r̃j1)−

ℓ∑

k=1

h(y(k)| yk−1
1 , xk1)

(a)
=

m∑

j=1

h(n(j)| yj−1
1 , r̃j1)−

ℓ∑

k=1

h(z(k)| yk−1
1 , xk1)

(b)
=

m∑

j=1

h(n(j)| nj−1
1 , r̃j1)−

ℓ∑

k=1

h(z(k)| zk−1
1 , xk1)

(c)
=

m∑

j=1

h(n(j)| nj−1
1 , r̃j1)−

ℓ∑

k=1

h(z(k)| zk−1
1 , r̃k1)

(d)
=

m∑

j=1

h(n(j)| nj−1
1 , r̃m1 )−

ℓ∑

k=1

h(z(k)| zk−1
1 , r̃ℓ1)

(e)
= h(nm1 |̃rm1 )− h(zℓ1 |̃rℓ1)
(f)
= h(nm1 , r̃

m
1 )− h(r̃m1 )− h(zℓ1, r̃ℓ1) + h(r̃ℓ1)

(g)
= h(r̃m1 | nm1 ) + h(nm1 )− h(r̃m1 )− h(r̃ℓ1| zℓ1)− h(zℓ1) + h(r̃ℓ1)

(h)
= h(nm1 )− h(zℓ1) + I(r̃ℓ1; z

ℓ
1)− I(r̃m1 ; nm1 ) (4.169)

In the above,(a) and(b) hold sincey(k) = n(k) + r̃(k) andy(k) = x(k) + z(k). (c) follows from

the fact that, ifzk−1
1 is known, then knowledge ofxk1 is equivalent to knowledge of̃rk1 (see Fig.4.8

and recall that G(z)

1+G(z)
is stable).(d) stems from the Markov chain (4.168). (e) stems from the chain

rule of differential entropy (see Property2.8 in Section2.3). (f), (g) and(h) follow from the property

h(a, b) = h(a|b) + h(b) and from the definition of mutual information, see (2.33). Substituting (4.169)
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into (4.165), and using (4.158),

Ī({x(k)} → {y(k)})− Ī({r̃(k)} ; {y(k)})

= lim
ℓ→∞

1

ℓ
I(xℓ1 → yℓ1)− lim

m→∞
1

m
I(r̃m1 ; ym1 )

(a)
= lim

ℓ→∞

1

ℓ
I(xℓ1 → yℓ1)− lim

m→∞
1

m
I(r̃m1 → ym1 ) (4.170)

(b)
= lim

m→∞
1

m
h(nm1 )− lim

ℓ→∞

1

ℓ
h(zℓ1) + lim

ℓ→∞

1

ℓ
I(r̃ℓ1; z

ℓ
1)− lim

m→∞
1

m
I(r̃m1 ; nm1 )

+ lim
m→∞

1

m
h(ym1 )− lim

ℓ→∞

1

ℓ
h(yℓ1)

(c)
= h̄({n(k)})− h̄({z(k)}) + lim

ℓ→∞

1

ℓ

[
I(r̃ℓ1; z

ℓ
1)− I(r̃ℓ1; nℓ1)

]

(d)

≥ h̄({n(k)})− h̄({z(k)})

(e)
=

1

2π

π∫

−π

log

∣∣∣∣
1

1 +G(ejω)

∣∣∣∣
2

dω =
∑

pG
i ∈P

log
∣∣∣pGi
∣∣∣

where(a) follows from the fact that there exists no feedback from{y(k)} to {r̃(k)}, and thus mutual

information and directed mutual information are equal.(b) follows from substituting (4.169) into (4.165)

and then into (4.170) (c) follows from the definition of differential entropy rate, see (2.28). (d) follows

from the Markov chain (4.168) and from the Data-Processing Inequality, see Fact2.5 on page40. No-

tice that equality holds in(d) if {r̃(k)} and{z(k)} are independent.(e) follows from applying (2.27)

to (4.167), and from the fact that 1
1+G(z)

is stable with a finite variance initial-state. The last equality

follows from Jensen’s formula [144] (see also the Bode Integral Theorem in, e.g., [145]). This completes

the proof.

The above theorem shows that the “internal” directed mutualinformation rateĪ({x(k)} → {y(k)})
exceeds the “external” mutual information rateĪ({r̃(k)} ; {y(k)}) by at least

∑
log
∣∣∣pGi
∣∣∣. The latter is a

non-negative quantity corresponding to the entropy gain ofthe transfer function1/(1 + G(z)). Notice

also that Theorem4.12does not require{r̃(k)} or {z(k)} to be stationary, and thatit holds even if{r̃(k)}
and {z(k)} are correlated.

The next lemma will be useful to prove the second main result of this section:

Lemma 4.13(Mean Power Gain of Stable Filters for Non-Stationary Processes). Assume that

λ̂z , max
ℓ

max
i

∣∣∣λi
(
K(ℓ)

z

)∣∣∣ <∞.

If two stable filtersP (z) andP (z) satisfy

∣∣P (ejω)
∣∣2 =

∣∣P (ejω)
∣∣2 ≤M, a.e. on[−π, π], (4.171)
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for some bounded constantM , then

J(P (z), {z(k)}) = J(P (z), {z(k)}). (4.172)

N

Proof. The cost measureJ(P, {z(k)}) can be written in matrix form as follows:

J(P (z), {z(k)}) , lim
ℓ→∞

1

ℓ
tr
{
K(ℓ)

z PH
ℓ P ℓ

}
(4.173)

whereP ℓ is theℓ × ℓ lower triangular Toeplitz matrix having the impulse response ofP (z) (truncated

to the firstℓ samples) along its first column. Using this expression, the absolute value of the difference

between the left and right hand sides of (4.172) can be bounded as

∣∣J(P (z), {z(k)})− J(P (z), {z(k)})
∣∣ =

∣∣∣∣ limℓ→∞

1

ℓ
tr
{
K(ℓ)

z PH
ℓ P ℓ

}
− lim
ℓ→∞

1

ℓ
tr
{
K(ℓ)

z P
H

ℓ P ℓ

}∣∣∣∣

= lim
ℓ→∞

1

ℓ

∣∣∣tr
{
K(ℓ)

z

(
PH
ℓ P ℓ − P

H

ℓ P ℓ

)}∣∣∣
(a)

≤ λ̂z lim
ℓ→∞

1

ℓ

∣∣∣tr
{

PH
ℓ P ℓ − P

H

ℓ P ℓ

}∣∣∣

≤ λ̂z lim
ℓ→∞

∣∣∣PH
ℓ P ℓ − P

H

ℓ P ℓ

∣∣∣
HS

, (4.174)

where|·|HS denotes the weak matrix norm, see Definition2.5 on page34. Inequality(a) follows from

Corollary4.17. The last inequality in (4.174) follows from applying Jensen’s inequality to (2.5).

In order to show that the last limit in (4.174) is zero, we will demonstrate thatPH
ℓ P ℓ andP

H

ℓ P ℓ are

asymptotically equivalent (see Definition2.7).

For this purpose, define

f1(ω) , P (ejω), ∀ω :
∣∣P (ejω)

∣∣ ≤M, (4.175a)

f2(ω) , P (ejω), ∀ω :
∣∣P (ejω)

∣∣ ≤M, (4.175b)

with f1(ω0) = M , for allω0 ∈ [−π, π] such that
∣∣P (ejω0)

∣∣ > M , andf2(ω0) = M , for allω0 ∈ [−π, π]

such that
∣∣P (ejω0 )

∣∣ > M . Notice from (4.171) that

|f1(ω)|2 = |f2(ω)|2 , a.e. on[−π, π]. (4.176)

The matricesP ℓ andP ℓ can be written as

P ℓ = T ℓ(f1), (4.177)

P ℓ = T ℓ(f2), (4.178)
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whereT ℓ(f1) andT ℓ(f2) are Wiener class Toeplitz matrices specified byf1 andf2, according to Def-

inition 2.6. From the functionsf1 andf2, also define the sequences of circulant matrices{Cℓ(f1)}∞ℓ=1

and{Cℓ(f2)}∞ℓ=1, according to Definition2.6 (see Section2.2). SinceP (z) andP (z) are stable, their

associated impulse responses are absolutely summable. This, together with the fact thatf1 and f2

are bounded byM , implies that the sequences of matrices{T ℓ(f1)}∞ℓ=1, {T ℓ(f2)}∞ℓ=1, {Cℓ(f1)}∞ℓ=1

and{Cℓ(f2)}∞ℓ=1 are uniformly bounded in the strong norm (see Definition2.4). Hence, from [129,

Lemma 11] the following asymptotic equivalences hold:

T ℓ(f1) ∼ Cℓ(f1), (4.179)

T ℓ(f2) ∼ Cℓ(f2). (4.180)

Direct application of [129, Theorem 1] yields

T ℓ(f1)
HT ℓ(f1) ∼ Cℓ(f1)

HCℓ(f1) (4.181)

T ℓ(f2)
HT ℓ(f2) ∼ Cℓ(f2)

HCℓ(f2). (4.182)

On the other hand, from (4.175), (4.171), and using [129, Lemma 10], we obtain

Cℓ(f1)
HCℓ(f1) = Cℓ(f

∗
1 f1) = Cℓ(f

∗
2 f2) = Cℓ(f2)

HCℓ(f2), (4.183)

which gives

T ℓ(f1)T ℓ(f1)
H ∼ Cℓ(f1f

H
1 ) = Cℓ(f2f

H
2 ) ∼ T ℓ(f2)T ℓ(f2)

H . (4.184)

By virtue of [129, Theorem 1], (4.184) leads directly to

T ℓ(f1)T ℓ(f1)
H ∼ T ℓ(f2)T ℓ(f2)

H (4.185)

which, by definition, implies that the limit on the right handof (4.174) is zero. This completes the

proof.

Based upon Theorem4.12and Lemma4.13, we can now state the second main result of this section.

Theorem 4.14(R
−→⊥ (D) for Gaussian Stationary Loop-External Signals). Consider the closed-loop sys-

tem shown in Fig.4.7. If {r(k)} is a Gaussian stationary process, then6

R
−→⊥ (D) =

1

2π

π∫

−π

log




√
|G1P |2 Sr + α + |G1P |

√
Sr√

α


 dω +

∑
i
log
∣∣pGi
∣∣ , (4.186)

6In these expressions the argumentejω of the functions in the integrands has been omitted for clarity.
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whereP (z) is a frequency weighting transfer function and whereα > 0 is the unique scalar satisfying

D =
1

4π

π∫

−π

(√
|G1P |2 Sr + α − |G1P |

√
Sr

)
|G1P |

√
Sr dω. (4.187)

Moreover,Ī({x(k)} ; {r(k) + z(k)}) equalsR
−→⊥ (D) if and only if{z(k)} is Gaussian, stationary, inde-

pendent of{r(k)}, and has PSD

S⋆z (ejω) =
1

2

(√
|G1P |2 Sr + α − |G1P |

√
Sr

)
|G1|
√
Sr

|P | , a.e. on[−π, π]. (4.188)

N

Proof. Define the error process

n(k) , y(k)− r̃(k) =
1

1 +G(z)
z(k). (4.189)

LetH(z) be a bi-proper, stable, transfer function, having a stable inverse, and such that

∣∣H(ejω)
∣∣ =

∣∣1 +G(ejω)
∣∣ ∣∣P (ejω)

∣∣ , ∀ω ∈ [−π, π], (4.190)

whereP (ejω) is the error weighting frequency response of the frequency weighting filterP (z) associated

to R
−→⊥ (D). From (4.112) and (4.113), if {n(k)} is uncorrelated with{r̃(k)}, then the minimum of

Ī({r̃(k)} ; {r̃(k) + n(k)} subject to the constraintJ(H(z), {n(k)}) ≤ D is given by

min
{n(k)}:{n(k)}⊥{r̃(k)}
J(H(z),{n(k)})≤D

Ī({r̃(k)} ; {r̃(k) + n(k)}) (4.191)

=
1

2π

π∫

−π

log




√
|H(ejω)|2 Sr̃(ejω) +

∣∣H(ejω)
∣∣√Sr̃(ejω) + α

√
α


 dω, (4.192)

whereα > 0 is the unique scalar parameter satisfying

D =
1

4π

π∫

−π

α
∣∣H(ejω)

∣∣√Sr̃(ejω)

|H(ejω)|
√
Sr̃(ejω) +

√
|H(ejω)|2 Sr̃(ejω) + α

dω. (4.193)

From (4.114), the minimum in (4.192) is achieved if and only if the error{n(k)} is a Gaussian stationary

process, independent of{r̃(k)}, and having PSD

Sn(ejω) =
1

2

(√
|H(ejω)|2 Sr̃(ejω) + α −

∣∣H(ejω)
∣∣√Sr̃(ejω)

) √
Sr̃(ejω)

|H(ejω)| , a.e. on[−π, π].

(4.194)
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On the other hand, from (4.189),

H(z) n(k) =
H(z)

1 +G(z)
z(k) = P (z) z(k), (4.195)

where

P (z) ,
H(z)

1 +G(z)
. (4.196)

Notice from (4.190) and (4.196) that

∣∣P (ejω)
∣∣ =

∣∣P (ejω)
∣∣ , ∀ω ∈ [−π, π]. (4.197)

Thus, for any process{z(k)},

J(H(z), {n(k)}) = J(P (z), {z(k)}) = J(P (z), {z(k)}), (4.198)

where the last equality follows from Lemma4.13. In view of Theorem4.12, (4.198) implies that

min
{n(k)}:{n(k)}⊥{r̃(k)}
J(H(z),{n(k)})≤D

Ī({r̃(k)} ; {r̃(k) + n(k)})

= min
{z(k)}:{z(k)}⊥{r̃(k)}
J(P (z),{z(k)})≤D

Ī({x(k)} ; {x(k) + z(k)})−
∑

i
log
∣∣pGi
∣∣ .

(4.199)

In addition,

Sn(ejω) =

∣∣∣∣
1

1 +G(ejω)

∣∣∣∣
2

Sz(e
jω) =

∣∣P (ejω)
∣∣2

|H(ejω)|2
Sz(e

jω), ∀ω ∈ [−π, π] (4.200a)

and

Sr̃(e
jω) =

∣∣∣∣
G1(e

jω)

1 +G(ejω)

∣∣∣∣
2

Sr(e
jω) =

∣∣G1(e
jω)P (ejω)

∣∣2

|H(ejω)|2
Sr(e

jω), ∀ω ∈ [−π, π] (4.200b)

Substitution of (4.200) and (4.192) into (4.199) yields (4.186). Since (4.198) holds, (4.187) follows

from substituting (4.200) into (4.193). Finally, substituting (4.200) into (4.194), it follows that a process

{z(k)} minimizesĪ({x(k)} → {x(k) + z(k)}) subject toJ({z(k)}) ≤ D if and only if it is Gaussian,

stationary, independent of{r(k)} and has the PSD given in (4.188). This completes the proof.

The following example illustrates the applicability of theresults obtained in this section for networked

control problems.

Example: Figure4.9-(a) shows a model of the closed-loop control system introduced in Fig.1.3 (see

Section1.1). The controllerC(z) and the plantG(z) may be unstable, but the closed loop system is
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z(k)

x(k)y(k)

d(k)

G(z)C(z)

(a) (b)

u(k) ≡ 0
x(k)

z(k)

û(k)

C(z)

G(z)d(k)
y(k)

Figure 4.9: (a) Closed loop control system; (b) Equivalent scheme.

stable. The controller is bi-proper, and the plant has relative degree one or more. The reference signal

{u(k)} is zero, and the disturbance{d(k)} is a Gaussian stationary process with PSDSd(ejω). In

Fig. 4.9-(a) the encoder-decoder pair has been replaced by a channelwith additive noise{z(k)}. This

noise is the error introduced by the ED pair. An analyticallyequivalent system is shown in Fig.4.9-(b).

We are interested in finding the PSD of an error process{z(k)} uncorrelated to{d(k)}, such that it

minimizes the directed mutual information rateĪ({x(k)} → {y(k)}) subject to the constraint that the

variance of{û(k)} is smaller thanD. The variance of{û(k)} is the tracking error variance. In order

to apply Theorem4.14, we need to determine the corresponding frequency weighingtransfer function

P (z). Since we aim to minimize the variance of{x(k)}, P (z) needs to be the transfer function from

{z(k)} to {x(k)}. From Fig.4.9, this transfer function is

P (z) = − C(z)G(z)

1 + C(z)G(z)
. (4.201)

The minimum ofĪ({x(k)} → {y(k)}), subject to having a tracking error variance smaller thanD, for

anyD > 0, can be found directly by substituting the right-hand side of (4.201) for P (z),G(z) forG1(z),

andSd(ejω) for Sr(e
jω), in Theorem4.14.

4.10 Summary

In this chapter we have defined the rate-distortion functionwhen the WCMSE is used as the distortion

metric. We have characterized this RDF for Gaussian scalar sources, Gaussian vector sources, and Gaus-

sian stationary process sources. The achievability of the WCMSE-RDF has been shown for Gaussian

scalar and vector processes. We have seen that the WCMSE-RDFbecomes Shannon’s RDF for Gaussian

sources whena = b = 1. It has also been verified that settinga = 1 andb = ∞ renders the WCMSE-

RDF equivalent to the quadratic Gaussian RDF for source-uncorrelated distortions, denoted byR⊥(D),
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recently introduced by the author in [127]. We have extendedR⊥(D) to situations in which there exists

linear, time-invariant feedback between reconstruction and source.

4.11 Appendix

Lemma 4.15(Theorem 4.5.2 in [6]). Let A∞ be an infinite Toeplitz matrix with entryak ∈ r on the

k-th diagonal. Then the eigenvalues ofA∞ are contained in the intervalm ≤ λ ≤ M , wherem and

M denote the essential infimum and supremum, respectively, ofthe functionf(ω) ,
∑∞

k=−∞ ak e−jkω .

Moreover, if bothm andM are finite andG(λ) is any continuous function ofλ ∈ [m,M ], then

lim
N→∞

1

N

∑N

k=1
G(λ

(N)
k ) =

1

2π

∫ π

−π
G[f(ω)]dω,

where theλ(N) are the eigenvalues of the sub-matrixA(N) ∈ RN×N of A∞ centred about the main

diagonal ofA∞. N

Theorem 4.16(From [163]). If A andB areN -square normal matrices with eigenvaluesλi(A) and

λi(B), i = 1, . . . , N , then

minR
{

N∑

i=1

λi(A)λp(i)(B)

}
≤ R

{
N∑

i=1

λi(AB)

}
≤ maxR

{
N∑

i=1

λi(A)λp(i)(B)

}
, (4.202)

where “max” and “ min” are taken over all permutationsp of the eigenvalues ofB. N

From this theorem, the next corollary follows immediately:

Corollary 4.17. If A and B are N -square Hermitian matrices, with eigenvaluesλi(A) andλi(B),

i = 1, . . . , N , where

λi(A) ≥ λj(A); and λi(B) ≥ λj(B), ∀i ≥ j, i, j ∈ {1, . . . , N}, (4.203)

then

min

N∑

i=1

λi(A)λN+1−i(B) ≤ tr {AB} ≤ max

N∑

i=1

λi(A)λi(B), (4.204)

where “max” and “ min” are taken over all permutationsp of the eigenvalues ofB. N
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Chapter 5

Using Realizations of the RDF to

Design Optimal Source Coders

The ten thousand questions are one question. If you cut through
the one question, then the ten thousand questions disappear.

Zen proverb.

5.1 Introduction

In this chapter we study how, and when, it is possible to utilize knowledge of a realization of the rate-

distortion function, for a given source and distortion metric, to design optimal (or near-optimal) source

coders. The source coders considered here comprise fullband and subband source coders based upon a

quantizer and linear processing around it.

We will begin with an illustrative comparison. Consider thefeedback quantizer(FQ) architecture

shown in Fig.3.1. We have seen that, given the Linear Model defined in Section3.2.2, the weighted

correlationMSE (WCMSE)-optimal filters in this scheme, under a constraint on the quantizer SNR, are

characterized by (3.117). If P (ejω) ≡ 1, then the PSD of source-uncorrelated reconstruction errors

obtained with these filters is

Su(e
jω) , σ2

n

∣∣B(ejω)
∣∣2 f(ejω)2 =

α

4

(
1− α

[√
G(ejω)2 + [1− a

b ]α +G(ejω)
]2

)
, ∀ω ∈ [−π, π],

(5.1a)

whereα > 0 is the unique scalar satisfying (3.118). In addition, the frequency response of the signal

165
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transfer function, given by (3.117b), is

A(ejω)B(ejω) = 1− (a/b)α/2(√
G(ejω)2 +

[
1− a

b

]
α +G(ejω)

)
G(ejω)

(5.1b)

By comparing (5.1) with (4.85), we see that

Su(ejω) = S⋆u(ejω)

and

A(ejω)B(ejω) = V ⋆(ejω),

for all ω ∈ [−π, π]. Therefore, (5.1a) and (5.1b) characterize a realization ofRa,b(D) if source and

quantization errors are replaced by Gaussian variables whilst keeping the same first and second moments.

Equivalently, the SNR-optimal filters are also such that they minimize the mutual information between

source and reconstruction, for a given value of the WCMSE.

Clearly, if one knew beforehand that the optimal filters in anSNR-constrained optimization prob-

lem also realizedRa,b(D), then it would have been possible to derive the optimal frequency responses

obtained in Theorem3.10with ease. However, such correspondence does not always take place.

As an example, consider the case in which there is no feedback(i.e., whenF (z) ≡ 0, see Fig.3.1).

The optimal frequency responses forA(z) andB(z) for this case (which are given by Theorem3.5taking

f(ejω) ≡ 1), yield Su(e
jω) 6= S⋆u(ejω) andA(ejω)B(ejω) 6= V ⋆(ejω), a.e. on[−π, π], see (4.85a)

and (4.85b). In other words, with the SNR-optimal filters characterized by Theorem3.5, replacing source

samples and quantization errors by Gaussian variables would not yield a realization of the WCMSE rate-

distortion function (WCMSE-RDF).

The above comparisons raise the following questions:

• Why is SNR minimization at times, but not always, equivalentto end-to-end mutual information

rate minimization?

• Why does the use of feedback in the first case examined above yield SNR minimizing filters that

also realize the (WCMSE) rate-distortion function?

• Is it possible to know, a-priori, when such correspondence takes place in other schemes, such as,

for example, subband coding architectures?

These are the main questions to be answered in this chapter. The answers will be given first for

the case of scalar processes (which relates to FQ scheme discussed above), in Section5.2, and then for

the case of random vectors, in Section5.3. In the latter case, we will see how to use knowledge of a
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A(z) B(z)

F (z)

A(z) B(z)

F (z)

n(k)

n(k)

v(k) w(k)

{x(k)} is w.s.s. with PSDSx(e
jω)

{n(k)} is white and w.s.s.

E [x(i) n(k)] = 0, ∀i, k ∈ Z

(a)

y(k)x(k) xG(k)

{xG(k)} is Gaussian stationary with PSDSx(e
jω)

{nG(k)} is white, Gaussian and stationary,

(b)

E [xG(i) nG(k)] = 0, ∀i, k ∈ Z

with varianceσ2
n

wG(k)

nG(k)

nG(k)

yG(k)
vG(k)x̃G(k)

Figure 5.1: a) Linear model of a scalar feedback quantizer. b) Forward test channel with

filters.

realization of the WCMSE-RDF to design optimal transform coders. It will be shown that, under the

Linear Model, the use of feedback is necessary for obtainingan optimalcausaltransform coder. In

addition, we will show how to design optimal causal transform coders that are as rate-distortion efficient

as the best non-causal transform coder,at all rates. Finally, we answer the above questions for the case

of random vector processes in Section5.4. We use the answers to characterize optimalfilter banks(FBs),

including the possible use of feedback. It is shown that, in general, and under the Linear Model, the use

of all threedegrees of freedom (pre-processing, post-processing andfeedback) is necessary in order to

obtain an optimal FB. By using the results derived in this section, it is possible to design FBs that attain an

operational rate-distortion performance that exceeds therate-distortion function by not more than0.254

bits/sample. Interestingly, under the Linear Model it turns out that, for optimality (which requires the use

of feedback), the majorization property is not necessary. In particular, it is not necessary for optimality

in perfect reconstruction filter banks. In addition, we showed that under the Linear Model, filter banks

in which the subband signals (prior to quantization) are mutually uncorrelated are not optimal. These

two observations stand in stark contrast with what is obtained for subband coders that do not make use

feedback, see, e.g., [86,113].

5.2 Conditions for Scalar Processes

It will be useful to formalize the questions stated at the endof the previous section by referring to the two

systems depicted in Fig.5.1, and their respective optimization problems, to be defined below. Notice that
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the only difference between the schemes in Fig.5.1-(a) and (b) is that, in the latter, the source{xG(k)}
and the noise{nG(k)} are Gaussian. In particular, both systems share the same filtersA(z), B(z) and

F (z), and equals SNRs:

γ =
σ2

v

σ2
n

=
σ2

vG

σ2
nG

, (5.2)

sinceSxG(ejω) = Sx(e
jω), ∀ω ∈ [−π, π], andSnG(ejω) = Sn(ejω) = σ2

n, ∀ω ∈ [−π, π].

Assuming that{n(k)} represents the sequence of quantization errors introducedby a scalar quantizer

Q, the scheme in Fig.5.1-(a) can be regarded as an analysis model for feedback quantizers, as discussed

in Chapter3. More precisely, under the Linear Model, defined at the end ofSection3.2.2, quantization

errors are white and uncorrelated with the source. In addition, if the output ofQ is encoded in a memory-

less fashion, then the associated operational bit-rate depends monotonically1 on the SNR ofQ, i.e., onγ

(see Assumption3.4 in Chapter3). Therefore, under the Linear Model, the problem of minimizing the

operational bit-rate under the constraint that the WCMSE does not exceed some valueD > 0 can be

stated as follows:

Optimization Problem 5.1. In the scheme depicted in Fig.5.1-(a),

Minimize: γ =
σ2

v

σ2
n

(5.3)

Subject to:Da,b(x, y) ≤ D (5.4)

over all filtersA(z),B(z) andF (z) such that the triplet[A(z), B(z), F (z)] ∈ F, whereF is a constraint

set. N

It must be noted that Optimization Problem5.1 is the generalized converse of optimization prob-

lems3.1–3.8stated in Chapter3. In each case, the architectural limitations that characterize each scenario

are embodied in the constraint setF.

The above optimization problem is the SNR minimization problem referred to in the questions at the

end of Section5.1. The end-to-end mutual information rate minimization problem in these questions can

be formally defined with the help of the system depicted in Fig. 5.1-(b). This system can be utilized to ob-

tain a forward test-channel realization of the WCMSE-RDF associated with the source{xG(k)}. In this

configuration, the filters that yield such a realization mustnecessarily solve the following optimization

problem (see Definition4.2in page125):

1Strictly speaking, this statement is accurate only if one assumes that the changes in the PDF ofv, stemming from varying

A(z), B(z) andF (z), have a negligible effect on the rate/SNR expressions (2.54) and (2.60). Nevertheless, the upper bound on

the operational rate given in in (2.60) associated with subtractively dithered uniform scalar quantization is always valid.
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Optimization Problem 5.2. In the scheme depicted in Fig.5.1-(b),

Minimize: Ī({xG(k)} ; {yG(k)}) (5.5)

Subject to:Da,b(xG, yG) ≤ D (5.6)

over all filtersA(z), B(z) andF (z) such thatF (z) is strictly causal. N

Notice that, in this optimization problem, there are no constraints on the filtersA(z),B(z) andF (z)

(other than the strict causality ofF (z)).

The following lemma states an important relationship between γ, Ī ({xG(k)} ; {yG(k)}), and

Ra,b(D).

Lemma 5.1. For the system in Fig.5.1-(b), the following holds:

ln(γ + 1)

2

(a)
= I(vG(k); wG(k))

(b)

≥ Ī({vG(k)} → {wG(k)})
(c)

≥ Ī ({xG(k)} ; {yG(k)})
(d)

≥ Ra,b(D).

(5.7)

In addition,

i) Equality holds in(b) if and only if{wG(k)} is white, i.e., iff

SwG
(ejω) = σ2

wG
= σ2

w, ∀ω ∈ [−π, π]. (5.8a)

ii) Equality holds in(c) if and only if

NB ⊆ NA. (5.8b)

iii) Equality holds in(d) if and only if

∣∣1− F (ejω)
∣∣2 ∣∣B(ejω)

∣∣ σ2
nG

= S⋆u(ejω), ∀ω ∈ [−π, π], and (5.8c)

A(ejω)B(ejω) = V ⋆(ejω), ∀ω ∈ [−π, π], (5.8d)

whereS⋆u(ejω) andV ⋆(ejω) are defined in(4.85a) and(4.85b), respectively.

N

Proof. We proceed by parts.

• Equality(a) follows from the fact that{vG(k)} and{nG(k)} are Gaussian and independent.
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• Inequality(b): We have that

I(vG(k); wG(k)) = h(wG(k))− h(wG(k)| vG(k)) = h(wG(k))− h(vG(k) + nG | vG(k))

= h(wG(k))− h(nG(k)| vG(k))

= h(wG(k))− h(nG(k)) (5.9)

= h(wG(k))− h(nG(k)| nk−1
G ) (5.10)

≥ h(wG(k)|wk−1
G )− h(nG(k)| nk−1

G ) (5.11)

= I({vG(k)} → {wG(k)})

In the above, (5.9) follows from the fact that{nG(k)} and{xG(k)} are independent and from the

fact thatF (z) is strictly causal. As a consequence,nG(k) is independent ofvG(k), for all k ∈ Z.

Similarly, (5.10) holds since the samples of{nG(k)} are independent. Inequality (5.11) holds from

the propertyh(x|y) ≤ h(x), with equality if and only ifx andy are independent. This proves the

first claim in Lemma5.1.

• Inequality(c): We have that

I({vG(k)} → {wG(k)}) = h̄({wG(k)})− h(wG(k)|wk−1
G , vkG)

= h̄({wG(k)})− h(wG(k)|wk−1
G , x̃kG) (5.12)

= Ī({x̃G(k)} → {wG(k)})

= Ī({x̃G(k)} ; {wG(k)}) (5.13)

Equality in (5.12) holds from the fact that, ifwk−1
G is known, theñxkG can be obtained deterministi-

cally fromvk−1
G , and vice-versa. Equality (5.13) follows from the fact that there exists no feedback

from {wG(k)} to {x̃G(k)}. On the other hand,̄I({x̃G(k)} ; {wG(k)}) ≥ Ī({xG(k)} ; {yG(k)}),
with equality if and only ifB(z) is invertible for all frequenciesω for which

∣∣A(ejω)
∣∣ > 0.This

proves the second claim in Lemma5.1.

• Inequality (d) follows from the definition ofRa,b(D). The conditions for equality stated in

point iii) in Lemma5.1follow directly from Theorem4.7on page130.

This completes the proof.

It is clear from (5.7) that, in the scheme depicted in Fig.5.1-(b), the quantity1
2 log(γ + 1) is lower

bounded byRa,b(D). Since there are no special constraints on the filters in Optimization Problem5.2, it

follows that condition iii) in Lemma5.1can always be met. Indeed, the combination of filters that solve

Optimization Problem5.2(all of which yield Ī({xG(k)} ; {yG(k)}) = Ra,b(D)) is not unique.
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On the other hand, it is always possible to chooseA(z), B(z) andF (z) so that thethreeconditions

in Lemma5.1are met. As a consequence, there exists, at least, one solution to Optimization Problem5.2

for which 1
2 log(γ + 1) = Ra,b(D).

These observations raise the following question: Is the WCMSE-RDF for{xG(k)} also a lower

bound for12 log(γ+1) in the system shown in Fig.5.1-(a)? The answer is yes, as shown by the following

lemma:

Lemma 5.2. In the system depicted in Fig.5.1-(a), the following holds:

1

2
log(γ + 1) ≥ Ra,b(D), (5.14)

whereRa,b(D) is the WCMSE-RDF for the source{xG(k)}, which is Gaussian and has the same PSD

as{x(k)}. Equality is achieved if and only if conditions (i), (ii) and(iii) in Lemma5.1are met. N

Proof. The validity of the result will be shown by using a contradiction argument. Thus, suppose

that (5.14) does not hold. Then, there exist a triplet of filters inF such thatDa,b(x, y) ≤ D and

1
2 log(γ + 1) < Ra,b(D). If these filters are now used in the scheme of Fig.5.1-(b), then the value

of γ would be the same. In addition, we have thatDa,b(xG, yG) = Da,b(x, y) ≤ D (since the WCMSE

depends only on the second moments of the source and reconstruction). However, this contradicts (5.7),

proving the validity of (5.14).

Lemma5.2leads to the first main result of this section:

Theorem 5.3. Suppose there exists a triplet of filters[A(z), B(z), F (z)] ∈ F that satisfies(5.8). Then,

a triplet of filters [A′(z), B′(z), F ′(z)] ∈ F is a solution to Optimization Problem5.1 if and only if

[A′(z), B′(z), F ′(z)] satisfies(5.8). N

Proof. If [A(z), B(z), F (z)] ∈ F satisfies (5.8), then, from Lemma5.1, it yields a value forγ such that

ln(γ + 1)/2 = Ra,b(D). Thus,[A(z), B(z), F (z)] yields the minimumγ that can be achieved with any

filters. Therefore, a triplet[A′(z), B′(z), F ′(z)] ∈ F is a solution to Optimization Problem5.1 only if

it yields ln(γ + 1)/2 = Ra,b(D). From Lemma5.1, the latter holds if and only if[A′(z), B′(z), F ′(z)]

satisfies (5.8). This completes the proof.

Theorem5.3 states an easy to verify condition under which filters that minimize the SNRγ, for

a constraintDa,b(x, n) < D, would also realizeRa,b(D) if the source and the noise were Gaussian.

When these conditions are met, knowledge of the realizationof the WCMSE-RDF can be used directly

to determine the optimal filters in a scalar feedback quantizer under the Linear Model.

The next corollary follows immediately from Theorem5.3:
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Corollary 5.4. Suppose there exists a triplet of filters[A(z), B(z), F (z)] ∈ F that satisfy(5.8). Then,

every solution to Optimization Problem5.1is also a solution to Optimization Problem5.2. N

Notice that ifA(z), B(z) andF (z) are unconstrained design choices, then (5.8) can be met for any

S⋆u andV ⋆(ejω). In such cases, Corollary5.4 implies that Optimization Problem5.2 can be solved

indirectly by solving Optimization Problem5.1.

5.2.1 All Three Degrees of Freedom are Necessary

A key conclusion to be drawn from Lemma5.2 is that, in the system of Fig.5.1-(a), at least three de-

grees of freedom are required in order to yield the ultimately achievable minimum forγ. This stems

from the fact that the frequency responsesA(ejω), B(ejω) andF (ejω) need to satisfy the three equa-

tions (5.8a), (5.8c), and (5.8d), and from noting that

Sw(ejω) =
∣∣A(ejω)

∣∣2 Sx(e
jω) + σ2

n

∣∣1− F (ejω)
∣∣2 , ∀ω ∈ [−π, π]. (5.15)

As we will see next, the use of entropy coding with memory allows one to obtain optimal performance

with only two of the degrees of freedom embodied byA(z),B(z) andF (z).

5.2.2 Entropy Coding with Memory is an Extra Degree of Freedom

Here we show that, when subtractively dithered uniform scalar quantization is employed in a feedback

quantizer, then the use of entropy coding with infinite memory constitutes an additional degree of free-

dom, apart from the three provided by the filters around the quantizer. We restrict to the cases in which

the source{x(k)} in Fig. 5.1-(a) is stationary.

In order to demonstrate the above claim, the following technical preliminary results are necessary.

Preliminary Results

The following result is the continuous analogue of that obtained by Kramer for discrete random vari-

ables [164, Property 3.6].

Lemma 5.5. In Fig. 5.1-(a), let{v(k)}, {w(k)} be jointly stationary random processes. If the differen-

tial entropy rates of{w(k)} and{n(k)} , {w(k)− v(k)} are bounded, then

Ī({v(k)} → {w(k)}) = lim
k→∞

I(vk1 ; w(k)|wk−1
1 ). (5.16)

N
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Proof. We have that

lim
k→∞

I(vk1 ; w(k)|wk−1
1 )

(a)
= lim

i→∞
h(w(k)|wk−1

1 )− lim
k→∞

h(w(k)|wk−1
1 , vk1) (5.17a)

(b)
= h̄(w)− lim

k→∞
h(w(k)|wk−1

1 , vk1). (5.17b)

Equality(a) holds if and only if the each of the limits on the right hand side of (5.17a) exist. The of these

limits, limi→∞ h(w(0)|w−1
−i ), is by definition the entropy rate of{w(k)}, which from the requirements

of the lemma, exists. Thus, equality(b) holds if and only if the second limit on the right hand side

of (5.17b) exists. To show that such limit exists, we note that

h(w(k)|wk−1
1 , vk1) = h(n(k)|wk−1

1 , vk1) ≥ h(n(k)| nk−1
1 ), ∀k ∈ Z+, (5.18)

where the inequality follows from the Markov chain(wk−1
1 , vk1)↔ nk−1

1 ↔ n(k). The latter stems from

the fact that the samples of{n(k)} are independent both mutually and with respect to{x(k)}; and from

fact thatwk−1
1 andvk1 are linear combinations of the samples ofnk−1

1 and samples of{x(k)}. Taking

limits on both sides of (5.18) yields

lim
k→∞

h(w(k)|wk−1
1 , vk1) ≥ h̄({n(k)}). (5.19)

From the stationarity of{w(k)}, it follows that h(w(k)|wk−1
1 , vk1) decreases monotonically with

increasingk. This result, together with (5.19) and the fact that
∣∣h̄({n(k)})

∣∣ < ∞, implies

that limk→∞ h(w(k)|wk−1
1 , vk1) exists. This proves that(b) and (c) in (5.17) hold, and that

limk→∞ I(vk1 ; w(k)|wk−1
1 ) exists. The validity of (5.16) then follows directly by virtue of Cesáro mean

theorem, see., e.g., [63, Thm. 4.2.3]. This completes the proof.

Lemma 5.6. In Fig. 5.1-(a), assume that{x(k)} is a stationary source, and that{n(k)} is i.i.d. noise

introduced by a subtractively dithered uniform scalar quantizer (SDUSQ),Q. Let the process{q(k)}
denote the quantized output ofQ. Then

1

N
H(qNkNk−N+1 | qNk−N1 , δNk1 ) = Ī({v(k)} → {w(k)}). (5.20)

N
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Proof.

1

N
H(qNkNk−N+1 | qNk−N1 , δNk1 ) =

1

N

Nk∑

i=N(k−1)+1

H(q(i)| qi−1
1 , δNk1 )

(a)
=

1

N

Nk∑

i=N(k−1)+1

H(q(i)| qi−1
1 , δi1)

(b)
=

1

N

Nk∑

i=N(k−1)+1

[
H(q(i)| qi−1

1 , δi1)−H(q(i)| qi−1
1 , δi1, v

i
1)
]

=
1

N

Nk∑

i=N(k−1)+1

I
(
vi1; q(i)| qi−1

1 , δk1
)

=
1

N

Nk∑

i=N(k−1)+1

[
h(vi1 | qi−1

1 , δi1)− h(vi1 | qi1, δi1)
]

(c)
=

1

N

Nk∑

i=N(k−1)+1

[
h(vi1 |wi−1

1 , δ(i))− h(vi1 |wi1)
]

(d)
=

1

N

Nk∑

i=N(k−1)+1

[
h(vi1 |wi−1

1 )− h(vi1 |wi1)
]

=
1

N

Nk∑

i=N(k−1)+1

I(vi1; w(i)|wi−1
1 ) (5.21)

In the above,(a) follows from the fact that all dither samples inδ∞i+1 are independent of all samples

qi1, for all i ∈ Z+. Equality (b) stems from the fact thatq(i) is a deterministic function ofv(i) and

δ(i), which yieldsH(q(i)| qi−1
1 , δi1, v

i
1) = 0. Equality(c) holds from the fact that knowledge ofw(i)

is equivalent to knowledge of{q(i), δ(i)}, ∀i ∈ Z+. The latter is a consequence of the fact that the

reconstruction levels ofQ are the midpoints of intervals of length∆, together with the fact that the dither

in an SDUSQ satisfies|δ(i)| ∈ [−∆
2 ,

∆
2 ), ∀i. Equality(c) follows from the fact that, in and SDUSQ, the

dither sampleδ(i) is independent ofvi1 and independent ofwi1.

Taking the limit ask →∞, we obtain

lim
k→∞

1

N
H(qNkNk−N+1 | qNk−N1 , δNk1 ) = lim

k→∞

1

N

Nk∑

i=N(k−1)+1

I(vi1; w(i)|wi−1
1 )

= lim
i→∞

I(vi1; w(i)|wi−1
1 ) (5.22)

where (5.22) follows from the fact that{v(k)} and{w(k)} are jointly stationary. Finally, (5.20) follows

directly from (5.22) upon applying Lemma5.5. This completes the proof.
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Theorem 5.7. In Fig. 5.1-(a), assume that{x(k)} is a stationary source, and that{n(k)} is i.i.d. noise

introduced by a subtractively dithered uniform scalar quantizer (SDUSQ),Q. Let RNop be the mini-

mum expected codeword length per symbol achievable when encodingN -length blocksqNkNk−N+1 of the

quantized output ofQ, whenk → ∞. Assume that both encoder and decoder have knowledge of dither

samplesδNk1 and of past quantized outputsqNk−N1 . Then

Ī({v(k)} → {w(k)}) ≤ RNop ≤ Ī({v(k)} → {w(k)}) +
1

N
. (5.23)

In addition,

R∞
op , lim

N→∞
RNop = Ī({v(k)} → {w(k)}). (5.24)

Proof. From [63, Theorem 5.4.2], it follows directly that

lim
k→∞

1

N
H(qNkNk−N+1 | qNk−N1 , δNk1 ) ≤ RNop ≤ lim

k→∞

1

N
H(qNkNk−N+1 | qNk−N1 , δNk1 ) +

1

N
(5.25)

Substitution of (5.20) into the above yields (5.23), from which (5.24) follows immediately. This com-

pletes the proof.

Entropy Coding with Memory is an Extra Degree of Freedom

From Theorem5.7, and if{x(k)} is a Gaussian stationary source, it follows that the minimumachievable

operational rate when using SDUSQ together with entropy coding with memory,R∞
op, in bits/sample,

satisfies

Ī({vG(k)} → {wG(k)}) ≤ R∞
op ≤ Ī({vG(k)} → {wG(k)}) + 0.254. (5.26)

This means that the minimal achievable operational bit-rate decouples from the SNRγ and from the

scalar mutual informationI(vG(k); wG(k)). Only conditions (ii) and (iii) in Lemma5.1 need to be

met in order to minimizēI({vG(k)} → {wG(k)}). Therefore, if we associate the operational rate with

the upper bound in (5.26), thenonly the two equations(5.8d) and (5.8c) need to be satisfied in order to

minimizeRop. As a consequence, when SDUSQ is employed in a scalar feedback quantizer encoding

a stationary source, the use of entropy coding with memory allows one to attain the minimal achievable

operational bit-rate without any of the three degrees of freedom associated with the filtersA(z), B(z)

andF (z) (see (5.8a), (5.8c) and (5.8d)).

Results similar to those obtained in this section,can be obtained for the cases where the source is a

random vector, as discussed next.
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Kn = diag{η(k)2}
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xG ∼ N (0,Kx)

nG ∼ N (0,Kn)

KnG,xG = 0

xG

x ∈ RN has covariance matrixKx

n ∈ RN has covariance matrix

Kn,x = 0
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yG

nG

wGvG

B

F

exG

Figure 5.2: a) Linear model of a transform coder. b) Forward vector test channel.

5.3 Conditions for Vector Sources

In this section we derive results analogue to Lemmas5.1 and5.2, Theorem5.3, and Corollary5.4, for

the cases in which the source is anN -dimensional random vector. For this purpose, consider thesystem

shown in Fig.5.2-(a). In this figure,x andn are zero mean random vectors, andA, B andF areN ×N
matrices. The elements of the random vectorn are mutually uncorrelated, andn is uncorrelated withx.

This system could be regarded as an analysis model for a transform coder with feedback [57, 120, 165].

Using the Linear Model,n would represent the error introduced byN parallel scalar quantizers. In order

to avoid algebraic loops, the matrixF needs to be lower triangular with zeros along its main diagonal

(i.e.,F needs to bestrictly causal). This constraint is analogous to requiring the feedback filterF (z) in

the systems in Fig.5.1to be strictly causal.

Let us define thevector of signal-to-noise ratios

γ , [γ(1), γ(2), . . . , γ(N)]T , (5.27)

where

γ(k) ,
σ2

v(k)

η(k)2
, k = 1, 2, . . . , N (5.28)

denotes the scalar SNR in thek-th channel,σ2
v(k) is the variance of thek-th element ofv and

η(k)2 , E
[
n(k)2

]
, k = 1, 2, . . . , N, (5.29)

is the variance of thek-th element inn.

We define the following optimization problem:
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Optimization Problem 5.3. For the system depicted in Fig.5.2-(a),

Minimize:
1

2N

N∑

k=1

log2(γ(k) + 1) (5.30)

Subject to:Da,b(x,y) ≤ D, (5.31)

over all sets of non-negative noise variances{η(k)2}Nk=1 and over all matricesA, B andF such that

F is strictly causal and[A,B,F ] ∈ F, whereF is a constraint set of matrix triplets. N

The second system, depicted in Fig.5.2-(b), differs from that of Fig.5.2-(a) only in that the source

and the noise are the Gaussian random vectorsxG andnG, having the same covariance matrices asx

andn, respectively. Since bothxG andnG are Gaussian, the un-correlation conditionKnG,xG = 0

implies thatxG andnG are independent. Similarly the fact thatKnG is diagonal implies thatnG has

mutually independent elements. This system can be seen as a forward vector channel realization of the

WCMSE-RDF for vector Gaussian sources, as characterized inSection4.4. From Definition4.2, the

matricesA, B andF that yield a realization ofRa,b(D) for xG must necessarily solve the following

optimization problem:

Optimization Problem 5.4. For the system depicted in Fig.5.2-(b),

Minimize:
1

N
I(xG;yG) (5.32)

Subject to:Da,b(xG,yG) ≤ D, (5.33)

over all sets of non-negative noise variances{η(k)2}Nk=1 and over all square matricesA, B andF such

thatF is strictly causal. N

Clearly, the vectors of SNRs in both systems in Fig.5.2are the same, since, in both systems, corre-

sponding signals have the same second moments. The following lemma, which is the vector version of

Lemma5.1, establishes a key relationship betweenγ andRa,b(D):

Lemma 5.8. In the system depicted in Fig.5.2-(b), the following holds:

1

2N

N∑

k=1

log(γ(k) + 1)
(a)
=

1

N

N∑

k=1

I(vG(k); wG(k))
(b)

≥ Ī(vG → wG)
(c)

≥ Ī(xG;yG)
(d)

≥ Ra,b(D)

(5.34)

In addition,

i) Equality is achieved in(b) if and only ifKwG is a diagonal matrix.

ii) Equality is achieved in(c) if and only ifNB ⊆ R⊥
A.
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iii) Equality is achieved in(d) iff

B(I − F )KnG(I − F )HBH = K⋆
u (5.35a)

BA = I − V ⋆, (5.35b)

whereK⋆
u andV ⋆ are as defined in(4.62).

N

Proof. We proceed by parts.

• Equality (a) follows from the fact thatxG andnG are Gaussian and independent, together with

the fact thatF is strictly causal.

• Inequality(b): We have that

I(vG(k); wG(k)) = h(wG(k))− h(wG(k)| vG(k)) = h(wG(k))− h(vG(k) + nG(k)| vG(k))

= h(wG(k))− h(nG(k)| vG(k))

= h(wG(k))− h(nG(k)) (5.36)

= h(wG(k))− h(nG(k)|nGk−1
1 ) (5.37)

≥ h(wG(k)|wG
k−1
1 )− h(nG(k)|nGk−1

1 ) (5.38)

⇒ 1

N

N∑

k=1

I(vG(k); wG(k)) ≥ Ī(vG → wG)

In the above, (5.36) follows from the fact thatnG and xG are independent and thatF (z) is

strictly causal. As a consequence,nG(k) is independent ofvG(k), for all k ∈ {1, . . . , N}. Sim-

ilarly, (5.37) holds since the samples ofnG are independent. Inequality (5.38) holds from the

propertyh(x|y) ≤ h(x), with equality if and only ifx andy are independent. This proves state-

ment (i) in Lemma5.8.

• Inequality(c): We have that

I(vG → wG) = h̄(wG)− h(wG(k)|wG
k−1
1 , vG

k
1)

= h̄(wG)− h(wG(k)|wG
k−1
1 , x̃G

k
1) (5.39)

= Ī(x̃G → wG)

= Ī(x̃G;wG) (5.40)

Equality (5.39) holds since, ifwG
k−1
1 is known, theñxGk1 can be obtained deterministically from

vG
k−1
1 , and vice-versa. Equality (5.40) holds from the fact that there is no feedback fromwG to
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x̃G. On the other hand,̄I(x̃G;wG) ≥ Ī(xG;yG) with equality if and only if the null space ofB is

contained within the space orthogonal to the range ofA. This proves statement (ii) in Lemma5.8.

• Inequality (d) follows from the definition ofRa,b(D). The conditions for equality stated in

point iii) in Lemma5.8follow directly from Theorem4.6.

This completes the proof.

As in the scalar case, we can see from (5.7) that, in the scheme depicted in Fig.5.2-(b), the quantity

1
2N

∑N
k=1 log(γ(k) + 1) is lower bounded byRa,b(D). Also, condition iii) in Lemma5.8 can always

be met, since there are no constraints onA, B andF other thanF being zero-lower-triangular. Indeed,

the combination of matrices and noise variances that solve Optimization Problem5.4is not unique, since

achieving equality in(d) of (5.34) requires to satisfy only the two matrix equations in (5.35), while there

are three matrices to be chosen, two of them with complete freedom. Of course, all the combinations

that solve Optimization Problem5.4yield Ī(xG;yG) = Ra,b(D). Moreover, it is always possible to find

matricesA, B andF so that allthreeconditions in Lemma5.8are met. As a consequence, there exists,

at least, one solution to Optimization Problem5.4for which 1
2N

∑N
k=1 log(γ(k) + 1) = Ra,b(D).

Notice that there are no explicit requirements on the noise variances{η(k)2}Nk=1 in order to achieve

equality throughout (5.34). In particular, it is not necessary that all noise variances be equal. Notice also

that, in condition (i) of Lemma5.8, the random vector whose components need to be independent isw,

and notv. That is,it is not required thatA “de-correlate” x.

Similarly to the scalar case, the WCMSE-RDF forxG also constitutes a lower bound for

1
2N

∑N
k=1 log(γ(k) + 1) in the not-necessarily Gaussian system shown in Fig.5.1-(a). This is formally

stated in the following lemma:

Lemma 5.9. In the system depicted in Fig.5.2-(a), the following holds:

1

2N

∑N

k=1
log(γ(k) + 1) ≥ Ra,b(D), (5.41)

whereRa,b(D) is the WCMSE-RDF for the sourcexG, which is Gaussian having the same covariance

matrix asx. Equality is achieved if and only if conditions (i), (ii) and(iii) in Lemma5.8are met. N

Proof. The proof is essentially the same as the proof for Lemma5.2.

With the above lemma, we obtain the following theorem.

Theorem 5.10. Suppose there exists a triplet of matrices[A,B,F ] ∈ F that satisfy conditions (i), (ii)

and (iii) in Lemma5.8. Then, a triplet of matrices[A′,B′,F ′] ∈ F is a solution to Optimization

Problem5.3if and only if[A′,B′,F ′] also satisfies conditions (i), (ii) and (iii) in Lemma5.8. N
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Proof. If there exists a triplet of matrices[A,B,F ] ∈ F that satisfies the three conditions of Lemma5.8,

then, from Lemma5.8, [A,B,F ] yields 1
2N

∑N
k=1 log(γ(k) + 1) = Ra,b(D), which is the lower bound

for 1
2N

∑N
k=1 log(γ(k) + 1) achievable with any matrices. Therefore, a triplet[A′,B′,F ′] ∈ F is

a solution to Optimization Problem5.3 only if it yields 1
2N

∑N
k=1 log(γ(k) + 1) = Ra,b(D). From

Lemma5.8, the latter holds if and only if[A′,B′,F ′] satisfies the three conditions of Lemma5.8. This

completes the proof.

The next corollary follows immediately from Theorem5.10:

Corollary 5.11. Suppose there exists a triplet of matrices[A,B,F ] ∈ F that satisfies conditions (i), (ii)

and (iii) in Lemma5.8. Then, every solution to Optimization Problem5.3is also a solution to Optimiza-

tion Problem5.4. N

Optimal Transform Coder Design

We will next apply the above results to the design of optimal transform coders [58, 120, 166]. For that

purpose, it is necessary to link the quantity12N
∑N
k=1 log(γ+1) to the total operational bit-rate associated

with theN quantizers in the transform coder. More precisely, denoting the total operational bit-rate by

Rop, there must exist a monotonically increasing functionL : R+ → R+, independent of the matrices

A, B andF , such that

Rop = L

(∑N

k=1
log(γ + 1)

)
. (5.42a)

In addition, in order to apply Lemmas5.8, 5.9 and Theorem5.10 to the design of optimal transform

coders, we need to assume the following:

E [v(k) n(k)] = 0, ∀k ∈ {1, 2, . . . , N} (5.42ba)

E [v(k) n(i)] = 0, ∀k 6= i, k, i ∈ {1, 2, . . . , N} (5.42bb)

E [n(k) n(i)] = δk,i, ∀k, i ∈ {1, 2, . . . , N}. (5.42bc)

whereδk,i denotes the Kronecker delta function. The expressions in (5.42) impose requirements on the

scalar quantizers for which the above results can be used. Itis clear that (5.42b) can be satisfied by

using dithered scalar quantizers [85, 126, 132, 134]. We will show below that dithered quantization also

satisfies (5.42a).

Suitable Scalar Quantizers

Conditions (5.42ba), (5.42bb) and (5.42bc) can be satisfied exactly by using uniform scalar quantization

with dither, both subtractive and non-subtractive. For this to hold, the dither signals applied to each scalar
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quantizer must be independent both mutually and fromv. Furthermore, in the case of subtractive dither,

the dither has to be uniformly distributed over the quantization interval [126,132]. In the non-subtractive

case, the dither needs to either have a uniform PDF over the quantization interval or its PDF must be an

m-fold convolution of such uniform PDFs (withm ≥ 2), see [85,134].

In relation to the SNR/bit-rate requirement imposed by (5.42a), we will show that by using uni-

form scalar quantization with dither (both subtractive ad non-subtractive), the operational rate is well

approximated by the following expression:

Rop =
1

2

N∑

k=1

log2(γ(k) + 1) +

N∑

k=1

C (fv(k)), (5.3)

whereC (·) is a functional which depends on the type of dither techniqueutilized andfv(k) is the PDF

of the k-th component ofv. Thus, assuming that the change in the PDFsfv(k), due to variations in

A, B andF , has a negligible net effect on
∑N

k=1 C (fv(k)), the rate-SNR expression (5.3) satisfies

condition (5.42a). We next discuss the validity of (5.3) for uniform scalar quantizers with dither, both

subtractive and non-subtractive.

• Entropy coded uniform scalar quantization with subtractive dither (SDUSQ): In this case, utilizing

entropy coding conditioned on the dither, the operational rate of each scalar quantizer is:

rk =
1

2
log2(γ(k) + 1) + 0.254−D(v(k)‖ vG(k)). (5.4)

This result follows directly from (2.58), (2.57) (on page42) and from (4.136) (see the proof of

Lemma4.10on page148). Notice that (5.4) is a special case of (5.3). Thus, assuming that the

effect of the matricesA, B andF on the divergenceD(v(k)‖ vG(k)) can be neglected, SDUSQ

satisfies all the conditions stated in (5.42). We note that the assumption that the effect of the

matrices transform coder matrices on the PDFs of the subbandsignals is negligible is often used

in the analysis and design of transform coders, both with andwithout feedback, see, e.g., [57,111,

120,165,166].

• Entropy coded uniform scalar quantization with triangularPDF non-subtractive dither:The scalar

entropy rate of the output of the quantizer in this case is plotted in Fig.5.3for Gaussian input (solid

line), Laplacian input (dashed line), and uniformly distributed input (dashed dot line). It can be

seen from Fig.5.3 that for the three input PDFs considered, the entropy rates differ by not more

than0.2 bits/sample, for all entropy rates below5 bits/sample (equivalently, for allγ ≤ 100).

Moreover, all these plots can be closely approximated by thefunction 1
2 log2(γ + 1) + 1, also

plotted in Fig.5.3with dashed line and filled circle markers. The approximation error associated
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with 1
2 log2(γ + 1) + 1 is smaller than0.12 bits/sample, for all input PDFs considered, and for

all entropy rates below5 bits/sample (equivalently, for allγ ≤ 100). Thus, the operational rate of

each scalar quantizer can be closely approximated by:

rk =
1

2
log2(γ(k) + 1) + 1. (5.5)

With this approximation, uniform scalar quantization withnon-subtractive triangular dither satis-

fies all the conditions stated in (5.42).

Solving the Equations

Assuming the use of dithered uniform quantization, optimaltransform coders can be easily designed by

using Lemma5.9or Theorem5.10. From these results, it holds that, if the following three equations can

be satisfied:

BA = I − V ⋆; (5.6a)

B(I − F ) diag
{
σ2

n(k)

}
(I − F )TBT = K⋆

u; (5.6b)

B diag
{
σ2

w(k)

}
BT = K⋆

y , (I − V ⋆)Kx(I − V ⋆)T + K⋆
u (5.6c)

whereK⋆
y , (I − V ⋆)Kx(I − V ⋆)T , then the solution characterizes an optimal transform coder.

One possible path for solving these equation is:

1. First choose anyB such thatB† diagonalizesK⋆
y. This will yield diag{σ2

w(k)}.

2. Then, chooseF such that(I − F )−1 diagonalizesB†K⋆
u(B†)T . This will yield diag{σ2

n(k)}.

3. Finally, setA = B†(I − V ⋆).

Notice from (5.6a) that if V ⋆ is not lower triangular, then it is not possible that bothA andB be

lower triangular matrices. SinceV ⋆ is symmetric for all WCMSE weightsa/b > 0, it follows that

Ra,b(D) cannot be achieved causally unlessb→∞, i.e., unlessRa,b(D) coincides withR⊥(D).

On the other hand, using a KLT matrix followed (preceeded) bydiagonal scaling matrices asA (and

B), constitutes a solution to (5.6) whenF = 0. This stems from the fact thatV ⋆ andK⋆
u, and thus

K⋆
y, are diagonalized by the same matrix. This also reveals the fact that, for random vector sources, the

subband expansion inherent to transform coding can substitute the lack of feedback, effectively yielding

three degrees of freedom in the design. However, if additional constraints are imposed onA or B, then

feedback becomes necessary for optimality, as illustratedin the following situation.
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Causal Transform Coder Design Example. In order to design an optimal perfect reconstruction

causal transform coder, one must first determine the value ofthe scalar parameterα in (4.61a), by solv-

ing (4.61a) (or (4.61b)) for the desired rate (or distortion). Then, the matricesK⋆
u andV ⋆ can be obtained

from (4.62a) and (4.62b), respectively. Following this, the matrixB can be chosen as:

B = L
(
diag

{
σ2

w(k)

})1/2

, (5.7)

whereL is the a lower triangular matrix such that

K⋆
y = LLT (5.8)

is a Cholesky decomposition ofK⋆
y = (I − V ⋆)Kx(I − V ⋆)T [159]. Then chooseA = B−1, which

is lower triangular. Finally, choose(I − F ) to diagonalizeB−1K⋆
uB−T . Such a choice of(I − F ),

which is constrained to be a unit-lower triangular matrix, always exists, and can be found by using,

e.g., [41, Lemma 1]. SinceA andB are lower triangular, the resulting transform coder is causal. (Indeed,

it is zero-delay.) We note thatK⋆
u andK⋆

y cannot be diagonalized by the same triangular matrix unless

K⋆
u = βK⋆

y, for some scalarβ > 0. This implies that,in order to obtain an optimal causal transform

coder, the use of a feedback matrix (and hence of all three degrees of freedom) is necessary. Notice also

that, in an optimal causal transform coder,the components ofv are not uncorrelated.

For Gaussian sources, and for any source-uncorrelated reconstruction MSE valueD > 0, the op-

erational rate-distortion performance of the causal transform coder obtained from the above equations

will exceedR1,∞(D) by
∑N

k=1 C (fv(k)), see (5.3). In particular, if entropy coded SDUSQ is used, the

operational bit-rate will exceedRa,b(D) by not more than0.254 bits/sample (see (2.60) on page42).

Moreover, if the variations of
∑N

k=1 C (fv(k)) produced by different choices of matrices is negligible,

then the obtained causal transform coder will be optimal within the family of all transform coders using

scalar quantizers with the same rate-SNR function. This means that, using entropy coded dithered quan-

tizers and with the matrices obtained from (5.6), causal transform coding is as rate-distortion efficient as

non-causal PR transform coding,at all rates.

5.4 Conditions for Vector Processes

In this section we extend the results derived in sections5.2 and5.3 to the cases in which the source is

anN -dimensional vector process. For this purpose, consider the system shown in Fig.5.4-(a). In this

figure,{x(k)} and{n(k)} are zero mean, jointly w.s.s. random vector processes, andA(z), B(z) and

F (z) areN ×N transfer functions matrices. TheN parallel processes{ni(k)}, i = 1, 2, . . . , N , which
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(a) (b)

Kn(z) = diag{η2
i }

A

{xG(k)} ∼ N (0,Kx(z))

{nG(k)} ∼ N (0,Kn(z))

KnG,xG(z) ≡ 0

{x(k)} has covariance matrixKx(z)

{n(k)} has covariance matrix

Kn,x(z) ≡ 0

nG(k)

nG(k)

B

Fn(k)

A

n(k)

B

F

x(k) v(k) w(k)
y(k)

vG(k) wG(k)exG(k) yG(k)xG(k)

Figure 5.4: a) Linear model of an encoder for vector processes. b) Forward vector test

channel.

comprise{n(k)}, are white, mutually uncorrelated, and{ni(k)} is uncorrelated with{xj(k)}, for all

i 6= j ∈ {1, 2, . . . , N}. More precisely, we have

Kn(z) = diag
{
η2
i

}
, ∀i = 1, 2, . . . , N (5.9)

Kn,x(z) ≡ 0, (5.10)

where

η2
i , E

[
ni(k)

2
]
, i = 1, 2, . . . , N, (5.11)

is the variance of thei-th process in{n(k)}.
The system in Fig.5.4-(a) could be regarded as an analysis model for an ED pair for vector processes.

If the processes{xi(k)} are the result of a polyphase decomposition of a scalar random process, this

model can represent a filter bank with feedback [28,61,115,117,167]. In this case, and using the Linear

Model,{n(k)} would represent the error processes introduced byN parallel scalar quantizers. As in the

transform coder case, in order to avoid algebraic loops, each element inF (z) must be a causal transfer

function, andF (z) needs to be lower triangular with zeros along its main diagonal (i.e.,F (z) needs to

bestrictly causal).

Thevector of signal-to-noise ratiosin this case is defined as

γ , [γ1, γ2, . . . , γN ]
T
, (5.12)

where

γi ,
σ2

vi

η2
i

, i = 1, 2, . . . , N (5.13)
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denotes the scalar SNR in thei-th channel, and wereσ2
vi

is the variance of thei-th process of{v(k)}.
Under the above conditions, we can define the following optimization problem:

Optimization Problem 5.5. For the system depicted in Fig.5.4-(a),

Minimize:
1

2N

N∑

i=1

log2(γi + 1) (5.14)

Subject to:Da,b({x(k)}, {y(k)}) ≤ D, (5.15)

over all w.s.s. processes{n(k)} and over all transfer functionsA(z), B(z) andF (z) such thatF (z)

is strictly causal and[A(z),B(z),F (z)] ∈ F, whereF is a constraint set of matrix transfer function

triplets. N

The second system, depicted in Fig.5.4-(b), has the same transfer functions as the system of Fig.5.4-

(a), but differs from the latter in that its source and noise are the Gaussian random vector processes

{xG(k)} and{nG(k)}, having the same covariance matrices as{x(k)} and{n(k)}, respectively. Since

both {xG(k)} and{nG(k)} are Gaussian, the no-correlation conditionKnG,xG(z) ≡ 0 implies that

{xG(k)} and{nG(k)} are independent. Similarly, the fact thatKnG(z) is diagonal implies that the

scalar processes in{nG(k)} are mutually independent. The system can then be seen as a forward vec-

tor channel realization of the WCMSE-RDF for Gaussian vector process sources, characterized in Sec-

tion 4.6. From Definition4.5, the transfer function matricesA(z), B(z) andF (z) that yield a realization

of Ra,b(D) for {xG(k)} must necessarily solve the following optimization problem:

Optimization Problem 5.6. For the system depicted in Fig.5.4-(b),

Minimize: Ī({xG(k)}; {yG(k)}) (5.16)

Subject to:Da,b({xG(k)} , {yG(k)}) ≤ D, (5.17)

over all stationary Gaussian vector processes{n(k)} and over all transfer function matricesA(z), B(z)

andF (z) such thatF (z) is strictly causal. N

Clearly, the vectors of SNRs in both systems in Fig.5.4are the same, since, in both systems, corre-

sponding signals have the same second moments.

Before extending lemmas5.1and5.8to vector processes, it is convenient to note that, for the system

of Fig 5.4-(b), the directed mutual information rate from{v(k)} to {w(k)} takes the following form:

Ī({v(k)} → {w(k)}) = Ī(vk → w(k)|wk−1) =

N∑

i=1

I
(
vk−1,v(k)i1 ; wi(k)|wk−1,w(k)i−1

1

)

(5.18)

Using this fact, we can state the following result:
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Lemma 5.12. In the system depicted in Fig.5.4-(b), the following holds:

1

2N

N∑

k=1

log(γi + 1)
(a)
=

1

N

N∑

i=1

I(vGi(k); wGi(k))
(b)

≥ Ī({vG(k)} → {wG(k)}) (5.19)

(c)

≥ Ī({xG(k)}; {yG(k)})
(d)

≥ Ra,b(D). (5.20)

In addition,

i) Equality is achieved in(b) if and only ifKwG(ejω) is a constant diagonal matrix.

ii) Equality is achieved in(c) if and only ifNB ⊆ R⊥
A.

iii) Equality is achieved in(d) iff

B(ejω)(I − F (ejω))KnG(ejω)(I − F (ejω))HB(ejω)H = K⋆
u(ejω) (5.21a)

B(ejω)A(ejω) = I − V ⋆(ejω), (5.21b)

whereK⋆
u(ejω) andV ⋆(ejω) are as defined in(4.121).

N

Proof. We proceed by parts.

• Equality(a) follows from the fact that{xG(k)} and{nG(k)} are independent Gaussian stationary

random vector processes, together with the fact thatF (z) is strictly causal.



188CHAPTER 5. USING REALIZATIONS OF THE RDF TO DESIGN OPTIMAL SOURCE CODERS

• Inequality(b): We have that

N∑

i=1

I(vGi(k); wGi(k)) =

N∑

i=1

h(wGi(k))− h(wGi(k)| vGi(k))

=

N∑

i=1

h(wGi(k))− h(nGi(k)| vGi(k))

(e)
=

N∑

i=1

h(wGi(k))− h(nGi(k))

(f)
=

N∑

i=1

h(wGi(k)) − h
(
nGi(k)|wk−1

G ,wG(k)i−1
1 ,vk−1

G ,vG(k)i1
)

=

N∑

i=1

h(wGi(k))− h
(
wGi(k)|wk−1

G ,wG(k)i−1
1 ,vk−1

G ,vG(k)i1
)

(g)

≥
N∑

i=1

h(wGi(k)|wk−1,w(k)i−1
1 )− h

(
wGi(k)|wk−1

G ,wG(k)i−1
1 ,vk−1

G ,vG(k)i1
)

=
N∑

i=1

I
(
vk−1
G ,vG(k)i1 ; wGi(k)|wk−1

G ,wG(k)i−1
1 ,vk−1

G ,vG(k)i1
)

(h)
= Ī({vG(k)} → {wG(k)})

In the above, equality(e) follows from the fact that{nG(k)} and{xG(k)} are independent and

from the fact thatF (z) is strictly causal. As a consequence,nGi(k) is independent ofvGi(k), for

all i ∈ {1, . . . , N}. Similarly, equality(f) holds sincenGi(k) is independent ofwk−1
G , wG(k)i−1

1 ,

vk−1
G andvG(k)i1, ∀i ∈ {1, 2, . . . , N}, ∀k ∈ Z. Inequality(g) holds from the propertyh(x|y) ≤
h(x), with equality if and only ifKy(ejω) is a constant diagonal matrix. Equality(h) follows

directly from (5.18). This proves statement (i) in Lemma5.12.

• Inequality(c): We have that

Ī({vG(k)} → {wG(k)})

= h(wGi(k)|wk−1,w(k)i−1
1 )− h

(
wGi(k)|wk−1

G ,wG(k)i−1
1 ,vk−1

G ,vG(k)i1
)

(i)
= h(wGi(k)|wk−1,w(k)i−1

1 )− h
(
wGi(k)|wk−1

G ,wG(k)i−1
1 , x̃k−1

G , x̃G(k)i1
)

= Ī({x̃G(k)} → {wG(k)})
(j)
= Ī({x̃G(k)}; {wG(k)})

where equality(i) follows from the fact that, ifwk−1
G andw(k)i−1

1 are known, theñxk−1
G and

x̃G(k)i1 can be obtained deterministically fromvGk−1 andvG(k)i1, and vice-versa. Equality(j)

follows from the fact that there exists no feedback from{wG(k)} to {x̃G(k)}. On the other hand,
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Ī({x̃G(k)}; {wG(k)}) ≥ Ī({xG(k)}; {yG(k)}) (data processing inequality), with equality if and

only if the null space ofB is contained in the space orthogonal to the range ofA. This proves

statement (ii) in Lemma5.12.

• Inequality (d) follows from the definition ofRa,b(D). The conditions for equality stated in

point iii) in Lemma5.12follow directly from Theorem4.8.

This completes the proof.

Since in Optimization Problem5.6the transfer function matricesA(z), B(z) andF (z) are not sub-

ject to any constraint, aside fromF (z) being strictly causal, it follows that condition iii) in Lemma5.12

can always be satisfied. Moreover, there exist infinite combinations of transfer function matrices

and noise variances that solve Optimization Problem5.6. Of course, all these combinations yield

Ī({xG(k)}; {yG(k)}) = Ra,b(D).

Of greater practical importance, we note that it is always possible to find transfer function matrices

A(z), B(z) andF (z) so as to satisfy allthreeconditions in Lemma5.12. This means that there exists

at least one solution to Optimization Problem5.6for which 1
2N

∑N
i=1 log(γi + 1) = Ra,b(D).

Notice that there are no explicit requirements on the noise variances{η2
i }Ni=1 in order to achieve

equality throughout (5.19). In particular, it is not necessary that all noise variances be equal. Notice also

that, in condition (i) of Lemma5.12, it is {w(k)}, and not{v(k)}, the random vector process whose

components need to be independent. More precisely, when thestrictly causal feedback matrix transfer

functionF (z) can be chosen freely, thenit is not required thatA(z) de-correlates the processes within

{x(k)}.
The result stated by Lemma5.12for the Gaussian system in Fig.5.4-(b) has an important implication

in the not-necessarily-Gaussian system of Fig.5.4-(a), as stated in the following lemma:

Lemma 5.13. In the system depicted in Fig.5.4-(a), the following holds:

1

2N

∑N

i=1
log(γi + 1) ≥ Ra,b(D), (5.22)

whereRa,b(D) is the WCMSE-RDF for a source{xG(k)}, which is Gaussian, stationary, and has the

same covariance matrix as{x(k)}. Equality is achieved if and only if conditions (i), (ii) and(iii) in

Lemma5.12are met. N

Proof. The proof is essentially the same as the proof for Lemma5.2.

The previous lemma allows one to state the following result:
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Theorem 5.14. Suppose there exists a triplet of transfer function matrices [A(z),B(z),F (z)] ∈ F

that satisfy conditions (i), (ii) and (iii) in Lemma5.12. Then, a triplet of matrix transfer function

[A′(z),B′(z),F ′(z)] ∈ F is a solution to Optimization Problem5.5if and only if[A′(z),B′(z),F ′(z)]

also satisfies conditions (i), (ii) and (iii) in Lemma5.12. N

Proof. If there exists a triplet of transfer function matrices, say[A(z),B(z),F (z)] ∈ F, that satisfies the

three conditions of Lemma5.12, then, from Lemma5.12, [A(z),B(z),F (z)] yields 1
2N

∑N
i=1 log(γi +

1) = Ra,b(D), which is the lower bound for12N
∑N

i=1 log(γi + 1) achievable by any transfer func-

tion matrices. Therefore, a triplet[A′(z),B′(z),F ′(z)] ∈ F is solution to Optimization Problem5.5

only if it yields 1
2N

∑N
i=1 log(γi + 1) = Ra,b(D). From Lemma5.12, the latter holds if and only if

[A′(z),B′(z),F ′(z)] satisfies the three conditions of Lemma5.12. This completes the proof.

The next corollary follows immediately from Theorem5.14.

Corollary 5.15. Suppose there exists a triplet of transfer function matrices [A(z),B(z),F (z)] ∈ F that

satisfies conditions (i), (ii) and (iii) in Lemma5.12. Then, every solution to Optimization Problem5.5 is

also a solution to Optimization Problem5.6. N

Optimal Filter Bank Design

If the vector process{x(k)} originates from the polyphase transformation of a scalar process, thenA(z)

andB(z) would constitute the analysis and synthesis polyphase matrices of a filter bank [59,60,168]. If

independent scalar quantizers are utilized in the subbands, with either subtractive dither or triangular non-

subtractive dither, together with memoryless entropy coding, then the operational rate can be assumed to

be a monotonically increasing function of12N
∑N
i=1 log2(γi+1) (see the results discussed in Section5.3).

In these cases, the results obtained in this section lead directly to the optimal choice forA(z), B(z) and

F (z), as discussed next.

It follows from Theorem5.14that, if the following three equations can be satisfied,

I − V ⋆(ejω) = B(ejω)A(ejω); (5.23a)

K⋆
u(ejω) = B(ejω)(I − F (ejω)) diag

{
σ2

ni

}
(I − F (ejω))TB(ejω)H ; (5.23b)

B(ejω) diag
{
σ2

wi

}
B(ejω)H = K⋆

y(ejω) , (I − V ⋆(ejω))Kx(ejω)(I − V ⋆(ejω))H + K⋆
u(ejω)

(5.23c)

then the solution will characterize an optimal filter bank. For any given target rate or distortion, which

will yield K⋆
u(ejω) andV ⋆(ejω) via (4.121), a possible path for solving (5.23) is the following:
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1. First choose anyB(ejω) such thatB(ejω)†K⋆
y(ejω)[B(ejω)†]H yields a constant diagonal matrix.

This matrix will bediag{σ2
wi
}.

2. Then, chooseF (ejω) such that

(I − F (ejω))−1B(ejω)†K⋆
u(ejω)(B(ejω)†)H(I − F (ejω))−H

gives a constant diagonal matrix. This will bediag{σ2
ni
}.

3. Finally, setA(ejω) = B(ejω)†(I − V ⋆(ejω)).

Notice that, in general, if no feedback is used (i.e., ifF (z) ≡ 0), then optimal performance cannot

be attained. To see this, notice that, ifB(ejω) is such thatB(ejω)†K⋆
y(ejω)[B(ejω)†]H is a constant

matrix, thenB(ejω)†K⋆
u(ejω)[B(ejω)†]H will not be a constant matrix, unlessKx(ejω) is constant,

see (4.121c). Thus, without feedback, all three conditions in Lemma5.12cannot be simultaneously met.

In view of this observation, Theorem5.14implies that, under the Linear Model, and with the operational

bit-rate depending on the SNRs of the quantizers in each subband as in (5.42a), not using feedback is

rate-distortion suboptimal. More generally, it is easy to see that, except for special cases, not being able

to exploit any of the three degrees of freedom discussed in Section1.1.3, herein embodied inA(z), B(z)

andF (z), entails a rate-distortion penalty.

On the other hand, when feedback is used, it is necessary for optimality thatthe signals entering each

scalar quantizer are mutually correlated. This stands in stark contrast with the case of subband coding

without feedback, where it has been shown that un-correlation between subband signals before quanti-

zation is a necessary condition for optimality, see, e.g., [26, 86, 113]. Notice also that the optimal filter

bank, obtained by solving (5.23), does not necessarily satisfy the majorization property.This property

consists of having the spectral densities of the scalar processes in{v(k)}, saySvi
(ejω), to satisfy

Svp(m)
(ejω) ≥ Svp(n)

(ejω), ∀ω ∈ [−π, π], ∀N ≥ m ≥ n ≥ 1, (5.24)

for some permutationp(·). Majorization has been shown to be a necessary condition foroptimality in

subband coders without feedback, see, e.g., [26, 86, 113]. The fact that it is not necessary when uncon-

strained feedback is used can be explained by noting that re-sorting spectral components of the source

as in (5.24) yields subband signals having a flatter PSD. This is beneficial, since the rate-distortion effi-

ciency of scalar quantization (possibly with memoryless entropy coding) is increased as the spectrum of

the signal being quantized becomes more flatter [55]. However, when optimal feedback is used together

with scalar quantization, the resulting performance is notdependent on the spectral density of the source,

see Remark4.4on page135.
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5.5 Summary

In this chapter, sufficient conditions have been derived under which knowledge of a realization of the

WCMSE-rate-distortion function can be directly used to obtain the optimal linear processing elements

around scalar quantizers. The conditions established for w.s.s. scalar processes, in Section5.2, lead di-

rectly to the optimal filters characterized for feedback quantizers characterized in Section3.9. In the

vector case, which was treaded in Section5.3, these conditions yield the matrices for rate-distortion op-

timal transform coders utilizing dithered scalar quantizers. In Section5.4, we have briefly illustrated

how the conditions derived for the case of w.s.s. random vector process sources directly yield the optimal

transfer function matrices in a filter bank. It has also been shown that, under a linear model of quanti-

zation errors, and except for particular cases, feedback isnecessary to attain rate-distortion optimality

in filter bank encoder-decoder pairs. Under these assumptions, it was also shown that for optimality

(which requires the use of feedback), the majorization property is not necessary. In particular, it is not

necessary in perfect reconstruction (PR) FBs. It was also shown in Section5.4 that, under the Linear

Model, filter banks in which the subband signals are mutuallyuncorrelated (prior to quantization) are not

optimal. These two observations stand in stark contrast with what is obtained for filter banks that do not

use feedback, see, e.g., [86,113].



Chapter 6

Bounds to the Causal Rate-Distortion

Function for Gaussian Processes

Never do today what you can put off till tomorrow.
Delay may give clearer light as to what is best to be done.

Aaron Burr, former vice-president of the United States of America.

If you make delay even ambrosia turns into poison.

Telugu proverb.

6.1 Introduction

The operation of an encoder-decoder pair consists of encoding {x(k)} into a binary sequence, which

is then decoded to generate the reconstruction{y(k)}. The end-to-end effect of any ED pair can be

described by a series ofreproduction functions{fk}∞k=1, such that, for everyk ∈ Z+,

yk1 = fk(x
∞
1 ). (6.1)

As already outlined in Section1.2.3, an encoder-decoder pair is deemed causal if the reconstruction of the

current sample in the decoder is a functiononlyof the current and past samples of the source, see [125].

To be more precise, we adopt the following definition from [125] 1:

1The analysis in [125] considers two-sided source processes{x(k)}∞k=−∞
, and the reconstruction of the source samples

{x(k)}∞1 only. Here we restrict to one-sided source processes to facilitate the connection with the definition of entropy rate, see

Definition 2.13in Section2.3.1.

193



194 CHAPTER 6. BOUNDS ON THE CAUSAL RDF FOR GAUSSIAN PROCESSES

ENCODER DECODER
b(k)

x∞1 yk1

Figure 6.1: Representation of an ED pair at the instant the output sequence yk
1 is generated

by the decoder.

Definition 6.1 (Causal Source Coder). An ED is said to be causal if and only if its reproduction functions

are such that

fk(x
∞
1 ) = fk(x̃

∞
1 ), wheneverxk1 = x̃k1 , ∀k ∈ Z+ (6.2)

N

Thus, the fact that a given ED pair is causal can be made more explicit by re-writing (6.1) as

yk1 = fk(x
k
1), ∀k ∈ Z+. (6.3)

It also follows from Definition6.1and Definition2.18(on page39) that an ED pair is causal if and only

if the following Markov chain holds:

x∞1 → xk1 → yk1 , ∀k ∈ Z. (6.4)

This can be easily seen by noticing that the Markov chain is equivalent to the conditional independence

situationfyk
1 ,x

∞
1 | xk

1
(yk1 , x

∞
1 |xk1) = fyk

1 | xk
1
(yk1 |xk1)fx∞

1 | xk
1
(x∞1 |xk1), i.e., upon knowledge ofxk1 , it holds

thatyk1 is independent ofx∞
1 and, in particular, independent ofx∞k+1. Having thatyk1 is independent of

x∞
k+1, upon knowingxk1 , is a necessary and sufficient condition for (6.2) to hold.

We defineLk(x∞
1 ) to be the total number of bits that the decoder has received when it generates the

output subsequenceyk1 . Let b(k) ∈ {0, 1}L(k) be the random binary sequence that contains the bits that

the decoder has received whenyk1 is generated. Notice thatLk is, in general, a function of all source

samples, since the binary coding may be non-causal, i.e.,yk1 may be generated only after the decoder has

received enough bits to reproduceym1 , wherem ≥ k. This is illustrated in Fig.6.1. We highlight the fact

that even thoughb(k) may contain bits which depend on samplesxmk+1 with m > k, the sequencesx∞
1

andyk1 may still satisfy (6.4), i.e., the ED pair can still be causal. Notice also thatLk(x
∞
1 ) is a random

variable, which depends onx∞
1 , the functions{fk} and on the manner in which the ED encodes the

source into the binary sequence sent to the decoder.

For further analysis, we define theaverage operational rateof an ED pair as [125]

r({y(k)} , {x(k)}) , lim
k→∞

sup
1

k
E [Lk(x

∞
1 )] . (6.5)
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In the sequel, we focus only on the MSE as the distortion metric and on Gaussian stationary process

sources. Accordingly, we define theaverage distortionassociated with an ED pair as:

d({x(k)} , {y(k)}) , lim
k→∞

sup
1

k
E
[
‖xk1 − yk1‖2

]
. (6.6)

The notions of average operational rate and average distortion allow us to define the operational causal

rate-distortion function as follows.

Definition 6.2 (Operational Causal Rate-Distortion). The operational causal rate-distortion function for

a source{x(k)} is defined as [125]:

Ropc (D) , inf
{fk} causal,

d({x(k)},{y(k)})≤D

r({fk}, {x(k)}). (6.7)

N

We note that the operational causal rate distortion function defined above corresponds to theoptimal

theoretically attainable performance(OPTA) of any causal ED pair.

In order to define an information theoretical counterpart ofRopc (D), we notice from [63, Theo-

rem 5.4.2] that

1

k
E [Lk(x

∞
1 )] ≥ 1

k
H(b(k)), ∀k ∈ Z+. (6.8)

Also, from the Data Processing Inequality (see Fact2.5on page40of Chapter2), we obtain

H(b(k)) = I(b(k);b(k)) ≥ I(x∞
1 ; yk1) = I(xk1 ; yk1), (6.9)

where the last equality follows from the fact that, for a causal ED, (6.4) needs to hold. Thus, combin-

ing (6.5), (6.8) and (6.9),

r({y(k)} , {x(k)}) ≥ lim
k→∞

1

k
I(xk1 ; yk1) = Ī({x(k)} ; {y(k)}). (6.10)

This lower bound motivates the introduction of an information-theoretic (as opposed to operational)

causal rate distortion function, as defined below.

Definition 6.3 (Information-Theoretic Causal Rate-Distortion Function). The information-theoretic

causal rate-distortion function for a source{x(k)}, with respect to the MSE distortion metric, is de-

fined as

Ritc (D) , inf Ī({x(k)} ; {y(k)}), (6.11)

where the infimum is over all processes{y(k)} such thatd({x(k)} , {y(k)}) ≤ D and such that(6.4)

holds. N
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The above definition is a special case of the information-theoretic rate distortion function with delay

introduced by Pinsker and Gorbunov in [169], which was then shown to converge to Shannon’s RDF, for

Gaussian stationary sources and in the limit as the rate goesto infinity [170] .

Since an ED pair matches Definition6.1if and only if its output{y(k)} satisfies (6.4) when the input

is {x(k)}, it follows from (6.7) and (6.10) that

Ropc (D) ≥ Ritc (D). (6.12)

It is known that the mutual information across an AWGN channel introducing noise with varianceD,

sayRAWGN (D), exceeds Shannon’s rate-distortion functionR(D) by at most0.5 bits/sample, see,

e.g. [126]. Thus, we have:

Ritc (D) ≤ RAWGN (D) ≤ R(D) + 0.5. (6.13)

This performance gap is consistent with the results reported in [171], where the gain produced by allow-

ing for non-causal reconstruction in DPCM converters was found to be a MSE reduction of at most3

[dB].

In the sequel, we propose an iterative procedure to obtain anupper bound forRitc (D) for Gaussian

stationary process sources. This bound can be defined as follows:

Definition 6.4 (Information-Theoretic Causal Stationary RDF). The Information-Theoretic Causal Sta-

tionary Rate-Distortion functionRitc (D) is defined as

Ritc (D) , inf Ī({x(k)} ; {y(k)}), (6.14)

where the infimum is over all processes{y(k)} such that:

i) d({x(k)} , {y(k)}) ≤ D,

ii) the reconstruction error{z(k)} , {y(k)} − {x(k)} is jointly stationary with the source, and

iii) Markov chain(6.4) holds.

N

We also find below that an upper bounding function forRopc (D) can also be obtained from this

iterative procedure, by showing that, for Gaussian stationary sources, it holds that

Ropc (D) ≤ Ritc (D) + 0.254, ∀D > 0. (6.15)
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From Definition6.4, it follows thatRitc (D) is a tighter upper bound onRitc thanRAWGN (D), for all

distortions. To see this, recall that

RAWGN (D) =
1

4π

π∫

−π

log2

(
Sx(e

jω)

D
+ 1

)
dω, 0 < D < σ2

x. (6.16)

On the other hand, simply placing an optimal scalar gain, with the valueσ2
x/(σ

2
x + d), after the output of

the AWGN channel with varianced, the distortion is reduced tod′ , σ2
xd/(σ

2
x + d) or, equivalently,

d =
σ2

x

σ2
x − d′

d′. (6.17)

Notice that applying a non-zero scalar gain after the ED pairpreserves the mutual information rate

between source and reconstruction. Thus, the mutual information rate of an AWGN channel with

the optimal scalar gain at the decoder end, as a function of the distortion, sayR′
AWGN (D), is given

by R′
AWGN (D) = RAWGN (

σ2
x

σ2
x−D

D). SinceRAWGN (D) is monotonically decreasing∀D ≤ σ2
x

(see (6.16)), it follows that R′
AWGN (D) < RAWGN (D). From this and (6.13), and noting that

Ritc ≤ R′
AWGN (D), we conclude that

Ritc (D) < R(D) + 0.5 bits/sample. (6.18)

From Definition6.4, it is also clear that, if there exists a realization ofRitc (D) in which the recon-

struction error is jointly stationary with the source (which seems to be a reasonable conjecture), then

Ritc (D) actually coincides withRitc (D).

6.2 Obtaining the Stationary Causal RDF

Here we show that, for Gaussian stationary sources, the stationary causal RDFRitc (D), introduced in

Definition6.4, can always be obtained by iteration. More specifically, we propose an iterative procedure

which is guaranteed to converge to the causal stationary RDF. In addition, this procedure yields a char-

acterization of the filters in a feedback quantizer that achieve an operational rate that equals the upper

bound on the right hand side of (6.15).

To derive these results, we first consider a scheme consisting of an AWGN channel and a set of causal

filters, as depicted in Fig.6.2. In this scheme, the source{x(k)} is Gaussian and stationary, with PSD

Sx(e
jω). From this, we define, as in Chapter3,

Ωx(e
jω) ,

√
Su(ejω) , ∀ω ∈ [−π, π]. (6.19)
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B(z)

F (z)

A(z)

n(k)

v(k) w(k)
y(k)x(k)

Figure 6.2: AWGN channel with causal filters.

In Fig. 6.3, {n(k)} is Gaussian noise with i.i.d. samples, independent of{x(k)}. Thus, betweenv(k)

andw(k) lies the AWGN channelw(k) = v(k) + n(k). The filtersA(z) andB(z) are casual and stable.

The filterF (z) is stable and strictly causal.

As in Chapter3, we define

K ,
σ2

v

σ2
n

+ 1 =
σ2

w

σ2
n

, (6.20)

f(ejω) ,
∣∣1− F (ejω)

∣∣ , ∀ω ∈ [−π, π]. (6.21)

The signal transfer function and the PSD of source uncorrelated distortion for the system in Fig.6.2are

given respectively by

W̃ (z) , A(z)B(z), (6.22a)

Su(ejω) ,
∣∣B(ejω)

∣∣2 f(ejω)2σ2
n. (6.22b)

In turn, the PSD of{w(k)} is given by

Sw(ejω) = Ωx(e
jω)2

∣∣A(ejω)
∣∣2 + σ2

nf(ejω)2, ∀ω ∈ [−π, π]. (6.22c)

From (3.23) (see page53), we obtain that the MSE is

MSE = Dc ,
‖ΩxA‖2‖Bf‖2
K − ‖f‖2 + ‖(AB − 1)Ωx‖2 (6.23)

From this, we define the following

Optimization Problem 6.1. For any givenΩx(e
jω), and for any givenK > 1, find the causal filters

A(z), B(z) andF (z) that minimizeDc. N

Based upon the results obtained in Chapter5, we next show that solving Optimization Problem6.1

amounts to finding the stationary causal rate distortion function of Definition6.4.
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B(z)

F (z)

x(k) A(z)

n(k)

v(k) w(k) fW (z) y(k)

Figure 6.3: AWGN channel within a “perfect reconstruction” system and causal de-noising

filter.

Lemma 6.1. If the filtersA
⋆
(z),B

⋆
(z), andF

⋆
(z) solve Optimization Problem6.1and yield distortion

D⋆
c , then

1

2
ln(K) = Ritc (D⋆

c ). (6.24)

N

Proof. Let S′
u andW ′ be, respectively, the PSD of the source uncorrelated noise,and the signal transfer

function of a realization ofRitc (D) (see (6.22)). Then

1

2
ln(K) = I(v(k); w(k))

(a)

≥ Ī({v(k)} → {w(k)})
(b)

≥ Ī({x(k)} ; {y(k)})
(c)

≥ Ritc (Dc). (6.25)

In the above, the first equality follows from the fact that{n(k)} is Gaussian. Inequalities(a) and(b)

follow directly from Lemma5.1. Lemma5.1 also shows that equality is achieved in(a) if and only

if {w(k)} is white, and in(b) if and only if NB ⊆ NA, i.e., if and only ifB(z) is invertible for all

frequenciesω for which
∣∣A(ejω)

∣∣ > 0. Inequality(c) follows from the definition ofRitc (D). From

Lemma4.1, the reconstruction error that realizesRitc (D) needs to be Gaussian. Since, in the system of

Fig. 6.2, the distortion is Gaussian, equality is achieved in(c) iff

Su(ejω) = S′
u(e

jω), ∀ω ∈ [−π, π], and (6.26a)

W̃ (ejω) = W̃ ′(ejω), ∀ω ∈ [−π, π]. (6.26b)

We note that, despite the causality constraints on the filters, (6.26) can be met while yieldingSw(ejω)

constant, for anyΩx, see (6.22). Thus,A
⋆
(z), B

⋆
(z), andF

⋆
(z) solve Optimization Problem6.1if and

only if they yield 1
2 ln(K) = Ritc (Dc). This completes the proof.

For any choice of filtersA(z),B(z), andF (z), the system in Fig.6.2is equivalent to the one depicted

in Fig. 6.3. In Fig. 6.3,
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A(z) = A(z), (6.27a)

F (z) = F (z), (6.27b)

B(z) = A(z)−1, and (6.27c)

W̃ (z) = B(z)B(z)−1 = B(z)A(z). (6.27d)

Thus,A(z) andB(z) satisfy the perfect reconstruction condition

A(ejω)B(ejω) ≡ 1, (6.28)

andW̃ (z) is the signal transfer function of the system, as before. On the other hand, the net effect of the

AWGN channel and the filtersA(z), B(z) andF (z) is to introduce Gaussian stationary additive noise,

independent of the source. We also have that

y(k) = W̃ (z) x(k) + W̃B(z)(z)[1− F (z)] n(k). (6.29)

From this, the PSD of source uncorrelated noise,Su(ejω), is given by

Su(ejω) =
∣∣∣W̃ (ejω)

∣∣∣
2 ∣∣B(ejω)

∣∣2 ∣∣1− F (ejω)
∣∣2 σ2

n. (6.30)

Thus, W̃ (z) can be seen as a de-noising filter utilized to reduce the MSE ofa Gaussian stationary

source{x(k)} corrupted by additive Gaussian stationary noise with PSDSu(ejω). Substituting (6.27)

into (6.23), the MSE can be expressed as

Dc = σ2
u + ‖(W̃ − 1)Ωx‖2 =

‖ΩxA‖2‖W̃Bf‖2
K − ‖f‖2 + ‖(W̃ − 1)Ωx‖2, (6.31)

whereσ2
u is the variance of the source uncorrelated reconstruction error.

In addition to (6.28), for any givenF (z) andW̃ (z), the filtersA(z) andB(z) in Fig. 6.3are chosen

so as to minimize the variance of source uncorrelated noise.For this purpose, from the viewpoint of the

subsystem comprised of the AWGN channel and the filtersA(z),B(z) andF (z), the filterW̃ (z) acts as

a frequency weighting filter. Thus, for anyF (z) andW̃ (z), the filtersA(z) andB(z) that minimizeσ2
u

can be found from Theorem3.3 (see page56), by settinga = b = 1, W (ejω) , 1, andP (z) = W̃ (z).

This yields thatA(z) andB(z) satisfy

∣∣A(ejω)
∣∣ = κ

√
|P (ejω)| |Ωx(ejω)|∼1

f(ejω) |W (ejω)| , a.e. on[−π, π], (6.32a)

∣∣B(ejω)
∣∣ =

1

κ

√
|P (ejω)|∼1 |Ωx(ejω)| f(ejω)∼1 |W (ejω)| , a.e. on[−π, π], (6.32b)

whereκ > 0 is an arbitrary real constant. Also, from (3.42) (page56), the variance of source uncorrelated

error when (6.32) holds is given by

σ2
u =
〈Ωx|W̃ |, f〉2
K − ‖f‖2 (6.33)
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On the other hand, the filterF (z) needs to be such that

π∫

−π

log f(ejω)dω ≥ 0, (6.34)

see (3.76) on page64.

Thus, if one wishes to minimize the reconstruction MSE by choosing appropriatecausalfilters in the

system in Fig.6.3for a given value ofK, one needs to solve the following optimization problem.

Optimization Problem 6.2. For any givenΩx(e
jω), and for any givenK > 1, find the frequency

responsẽW (ejω) and the frequency response magnitudef(ejω) that

Minimize: Dc ,
〈Ωx|W̃ |, f〉2
K − ‖f‖2 + ‖(W̃ − 1)Ωx‖2 (6.35a)

Subject to: W̃ ∈ H, (6.35b)
∫ π

−π
ln f(ejω)dω ≥ 0, (6.35c)

whereH ⊂ G denotes the space of all frequency responses that can be obtained with causal filters. N

Recalling that the system in Fig.6.2can always be re-arranged in the form of the system in Fig.6.3

with filters satisfying (6.27), it becomes clear that Optimization Problem6.2is equivalent to Optimization

Problem6.1. We put this fact in the form of a lemma for future reference.

Lemma 6.2. For any givenΩx andK > 1, Optimization Problem6.2 is equivalent to Optimization

Problem6.1.

The advantages for the analysis that the system of Fig.6.3has over the system of Fig.6.2will become

evident after we state the following lemma, which is key for subsequent results in this chapter. It will play

a central role in demonstrating the convergence propertiesof the iterative procedure that yieldsRitc (D),

to be proposed later.

Lemma 6.3. Define the sets of functions

FK ,
{
f : [−π, π]→ R+

0 , ‖f‖2 < K
}
, (6.36)

G , {G : [−π, π]→ C} , (6.37)

whereK is some positive constant. Then, for anyG ∈W andK > 1, the cost functionalJ : FK×G→
R+

0 , defined as

J (f, g) ,
〈f, |g|〉2
K − ‖f‖2 + ‖g −G‖2, (6.38)

is convex. N
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Proof. Choose any two arbitrary pairs(f1, g1) and(f2, g2), and a third arbitrary pair(f0, g0) satisfying

(f0, g0) , λ(f1, g1) + [1− λ](f2, g2)

for someλ ∈ [0, 1]. Defining

η , f2 − f1; θ , g2 − g1,

any duplet along the “line” between(f1, g1) and(f2, g2) can be written in terms of a single parameters

via

(f, g) = (f0 + ηs , g0 + θs),

wheres ∈ [λ− 1, λ]. Substitution into (6.38) yields

J (f, g) = J(s) ,

(
a+ bs+ ds2

)2

D
+R+ es+ ‖θ‖2s2 (6.39)

where

a , 〈f0, |g0|〉 (6.40)

b , 〈f0, |θ|〉+ 〈|g0| , η〉 (6.41)

d , 〈η, |θ|〉 (6.42)

D , K − ‖f0‖2 − 2〈f0, η〉s− ‖η‖2s2 (6.43)

e , 2R{〈g0−G, θ〉} (6.44)

R , ‖g0‖2 + ‖G‖2 − 2R{〈g0, G〉} , (6.45)

whereR{x} denotes the real part ofx. We next show thatJ (·, ·) is convex along the line between

(f1, g1) and(f2, g2). For this purpose, we first take the derivative ofJ(s) with respect tos, yielding:

J ′(s) =
2
(
a+ bs+ ds2

)
(b+ 2ds)D −

(
a+ bs+ ds2

)2
D′

D2
+ e+ 2‖θ‖2s.

Differentiating again and evaluating all terms ats = 0, we obtain

J ′′(0) =

{
2(b2 + 2ad)D0 + 2abD′

0 − 2abD′
0 − a2D′′

0

}
D2

0 − 2(2abD0 − a2D′
0)D0D

′
0

D4
0

+ 2‖θ‖2

=
2b2D2

0 + 4adD2
0 − a2D′′

0D0 − 4abD0D
′
0 + 2a2(D′

0)
2

D3
0

+ 2‖θ‖2

=
2
D0

(bD0 − aD′
0)

2
+ 4adD0 − a2D′′

0 + 2‖θ‖2D2
0

D2
0

, (6.46)
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where

D0 , D
∣∣
s=0

= K − ‖f0‖2 (6.47)

D′
0 ,

∂D

∂s

∣∣∣
s=0

= −2〈f0, η〉 (6.48)

D′′
0 ,

∂2D

∂s2

∣∣∣
s=0

= −2‖η‖2. (6.49)

Substituting (6.49) and (6.42) into (6.46),

J ′′(0) =
1
D0

(bD0 − aD′
0)

2
+ 2a〈η, |θ|〉D0 + a2‖η‖2 + ‖θ‖2D2

0

D2
0/2

=
1
D0

(bD0 − aD′
0)

2
+ ‖ηa+ |θ|D0‖2

D2
0/2

≥ 0.

Thus, the costJ (·, ·) along the “line” between(f1, g1) and(f2, g2) is convex. Since the latter holds for

any arbitrary pair of pairs, if follows thatJ (f, g) is convex. This completes the proof.

Lemma 6.4. For all Ωx and for allK > 1, Optimization Problem6.2is convex . N

Proof. With the change of variablesG , Ωx andg , ΩxW̃ , we obtainDc = J (f, g). With this,

Optimization Problem6.2amounts to finding the functionsf andg that

Minimize: J (f, g) (6.50a)

Subject to: g ∈W, f ∈ B. (6.50b)

where

W , {g = ΩxW : W ∈ H} (6.51)

B ,

{
f ∈ FK :

∫ π

−π
ln f(ejω)dω = 0

}
. (6.52)

Clearly,H is a convex set. This implies thatW is a convex set. In addition,B is also a convex set, and

from Lemma6.3, J (f, g) is a convex functional. Therefore, the optimization problem stated in (6.50)

is convex. This implies that Optimization Problem6.2is convex, thus completing the proof.

We can now define an iterative procedure that, as will be shownlater, yields the information theoretic

causal rate distortion function:
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Iterative Procedure 1

For any target information theoretical rateR,

Step 1: SetK = 22R.

Step 2: Set̃W (ejω) ≡ 1.

Step 3: Find the frequency response magnitudef ∈ B that minimizesDc for givenW̃ .

Step 4: Find the causal frequency responseW̃ ∈ H that minimizesDc for givenf .

Step 5: Return to step 3.

Notice that after solving Step 3 in the first iteration of Iterative Procedure 1, the result isR⊥(D), i.e.,

the MSE is comprised of only source-uncorrelated distortion. Step 4 then reduces the MSE by attenuat-

ing source-uncorrelated noise at the expense of introducing linear distortion. Each step reduces the MSE

until a local (or global) minimum of the MSE is obtained. Based upon the convexity of Optimization

Problem6.2, the following theorem, which is the main technical result in this chapter, guarantees conver-

gence to the global minimum of the MSE for a given end-to-end mutual information. Since all the filters

are causal, this global minimum actually corresponds to a point on theRitc (D) plot.

Theorem 6.5(Convergence of Iterative Procedure 1). Iterative Procedure 1 converges to the uniquef

andW̃ that realizeRitc (D). More precisely, if the MSE obtained by the procedure for a rateR, in the

limit as the number of iterations tends to infinity, isD′, then we haveR = Ritc (D′). N

Proof. The result follows directly from the fact that OptimizationProblem6.2 is convex inf andW̃ ,

which was shown in Lemma6.3, and from Lemmas6.2and6.1.

The above theorem states that the stationary information theoretic causal rate-distortion function can

be obtained by using Iterative Procedure 1. In practice, this means that an approximation arbitrarily close

toRc(D) for a givenD can be obtained if sufficient iterations of the procedure arecarried out.

The feasibility of running Iterative Procedure 1 depends onthe feasibility of solving each of the

minimization sub-problems involved in steps 3 and 4. We nextshow how these sub-problems can be

solved.
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Solving Step 3

If W̃ (ejω) is given, the minimization problem in Step 3 of Iterative Procedure 1 is equivalent to solving

a feedback quantizer design problem with the constraintA(z)B(z) ≡ 1 and with error weighting filter

P (ejω) = W̃ (ejω). Therefore, the solution is given by Theorem3.10, with the choicea = 1, b = ∞,

and settingP (z) = W̃ (z).

Solving Step 4

Finding the causal frequency responsẽW (ejω) ∈ H that minimizesDc for a givenf is equivalent to

solving

min
g:g∈W

J (f, g) (6.53)

for a givenf , whereW is as defined in (6.51). SinceW andJ (·, ·) are convex, (6.53) is a convex

optimization problem. As such, its global solution can always be found iteratively. In particular, if̃W (z)

is constrained to be anM -th order FIR filter with impulse responsec ∈ RM+1, such that̃W (ejω) =

F {c}, whereF{·} denotes the discrete-time Fourier transform, then

G (c) , J (f,F{c}) (6.54)

is a convex functional. The latter follows directly from theconvexity ofJ (·, ·) and from Lemma6.6

(see page206). As a consequence, one can solve the minimization problem in Step 4, to any degree

of accuracy, by minimizingG (c) over the values of the impulse response ofW̃ (ejω), using standard

convex optimization methods (see, e.g, [147]). This approach also has the benefit of being amenable to

numerical computation.

6.3 Upper Bound on the Operational Causal RDF

By using entropy coded scalar quantization with dither, theoperational rate of an FQ with the filters

obtained via Iterative Procedure 1 is guaranteed to exceedRitc (D) by less than0.254 bits/sample, see

Remark4.5after Lemma4.10on page148. Thus, we have the bound

Ropc (D) ≤ Ritc (D) + 0.254 bits/sample. (6.55)

We note that the feedback quantizer thus obtained corresponds to the ED pair yielding the best operational

rate-distortion performance achievable by any ED pair thatuses only LTI filters and subtractively dithered

scalar quantization.
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If the requirement of zero-delay, which is stronger than that of causality, was to be satisfied, then it

would not be possible to apply entropy coding to long sequences of quantized samples. This would entail

an excess bit-rate not greater than1 bit per sample, see, e.g., [63, Section 5.4]. As a consequence of this,

the upper bound on the operational bit-rate with zero-delay, sayRopZD(D), would be

RopZD(D) ≤ Ritc (D) + 0.254 + 1 bits/sample. (6.56)

The0.254 bits at the end of (6.55), commonly referred to as the “space-filling loss” of scalarquanti-

zation, can be reduced by using vector quantization [65,126]. Vector quantization could be applied while

preserving causality (and without introducing delay) if the samples of the source wereN -dimensional

vectors. This would also allow for the use of entropy coding overN -dimensional vectors of quantized

samples, which reduces the extra1 bit/sample at the end of (6.56) to 1/N bit/sample, see [63, Theo-

rem 5.4.2].

6.4 Summary

In this chapter we have shown that an upper bound on the information-theoretic causal rate distortion

function for Gaussian stationary sources and MSE distortion criterion, denoted byRitc , can always be

found iteratively. For that purpose, we have introduced an iterative algorithm which converges to the

minimum mutual information rate between source and reconstruction achievable by any stationary error

process having a given varianceD. We have named the associated minimum as the stationary causal

rate distortion function, denoted byRitc (D). If there exists a realization of the causal RDF for Gaussian

stationary sources and MSE distortion metric in which the reconstruction error is jointly stationary with

the source, thenRitc (D) = Ritc (D). The proposed method also yields the frequency response of the filters

in a feedback quantizer, using entropy coded scalar quantization with subtractive dither, with which the

operational rate exceedsRitc (D) by at most0.254 bits/sample. This constitutes an upper bound to the

operational rate of any causal encoder-decoder pair.

6.5 Appendix

Lemma 6.6. Let C : H → R be a convex cost functional. LetT : X → H be a linear mapping, where

X is some given vector space. Then, the functional

G (x) , C (T x+ b) (6.57)

is convex.
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Proof. Let x1, x2 be any two vectors inX. For any scalar parameterλ ∈ [0, 1],

G (λx1 + [1− λ]x2) = C (T (λx1 + [1− λ]x2) + b) (6.58)

(a)
= C (λ(T x1 + b) + [1− λ](T x2 + b)) (6.59)

(b)

≤ λC (T x1 + b) + [1− λ]C (T x2 + b) (6.60)

= λG (x1) + [1− λ]G (x2), (6.61)

where(a) stems from the linearity ofT and(b) follows from the fact thatC (·) is convex. This completes

the proof.
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Chapter 7

Conclusions

Previously I did not understand why I got no answer to my question;
today I do not understand how I could believe I was capable of asking.

But I didn’t really believe, I only asked.

Franz Kafka, Bohemian novelist.

Each problem that I solved became a rule,
which served afterwards to solve other problems.

Reńe Descartes, French Philosopher, in “Le Discours de la Méthode”.

7.1 Overview

This thesis has presented several novel results on the performance and design of both entropy and res-

olution constrained coders and decoders for stochastic sources. We next give a summary of the main

contributions and point at directions of future research.

7.2 Main Contributions

We have introduced in Section1.3.1a new distortion metric, which extends the standard mean squared

error (MSE). This extension has been given here the nameweighted correlation mean squared error

(WCMSE). This is the distortion metric considered throughout most of the thesis. The WCMSE is a

weighted sum of two terms:

1. The first term is the component of the MSE which is uncorrelated to the source.

2. The second term is the remainder of the MSE.

209
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By giving different weights,a and b, to each of these terms, the WCMSE can take account of, for

example, the different impact that each component of the MSEmay have in some applications, such as

image processing, parallel quantization schemes, and networked control systems. This is the first, and

preliminary, contribution of this thesis.

The second contribution is the characterization of the filters around a scalar quantizer with given

signal-to-noise ratio (SNR) that minimize the WCMSE. This was the subject of Chapter3. These re-

sults were obtained by modelling quantization errors as white and uncorrelated with the source. This

assumption is referred to as theLinear Model. The associated optimal performance (SNR-distortion)

trade-off for this class of encoder-decoder pairs has also been established, and is summarized in Ta-

ble3.3on page87, for several architectural constraints. The rate-distortion performance of oversampled

feedback quantization has also been analyzed in Section3.12. In particular, we have shown that, for a

fixed quantizer SNR, and when quantizer overload errors are negligible, the frequency weighted MSE of

optimal perfect reconstruction feedback quantizers decreases exponentially with the oversampling ratio,

λ. This result implies that, when entropy coded scalar quantization with subtractive dither and sufficient

quantization levels to avoid overload is employed, the MSE can be made to decay withλ asO(2−1.746λ),

whenλ → ∞. We also obtained an extension of this result for the case of subtractively dithered scalar

quantization with a (finite) number of quantization levels that is insufficient to avoid quantizer overload.

For this case, it was shown that for a subtractively ditheredscalar quantizer withN levels, the MSE can

be made to decay withλ asO(e−c0λ
1/3

), whenλ→∞, wherec0 , [0.5(N−1)]2/3. In order to achieve

this asymptotic decay rate, it is necessary to balance the variance of clipping and granular errors in the

quantizer, for each oversampling ratio, by adjusting the loading factorρ asρ = 4−1/3
√

3 (N−1)2/3λ1/3.

To the best of the author’s knowledge, this is the only resultavailable in the literature combining quan-

tization with overload and oversampling. It also seems to bethe first decay rate bound for the MSE of

oversampled quantization that holds for sources with infinite support.

The third main contribution of this thesis was the characterization, in Chapter4, of the rate-distortion

function (RDF) for Gaussian sources wherein WCMSE is used asthe distortion metric. We denoted

this RDF byRa,b(D). First we showed that the WCMSE cannot be expressed as the expectation of a

distortion measure in the usual sense, see Section4.2.1. The case of scalar Gaussian sources was studied

in Section4.3. It was shown that, for scalar Gaussian sources,Ra,b(D) is convex if and only ifa ≤ 2b.

In Section4.4 we characterizedRa,b(D) for the case of vector Gaussian sources. This result allowed

us to findRa,b(D) for stationary Gaussian sources in Section4.5, and for Gaussian stationary vector

process sources in Section4.6. We studied special cases ofRa,b(D) in Section4.5.2. More specifically,

it was verified that, as expected,R1,1(D) ≡ R(D), whereR(D) denotes Shannon’s quadratic Gaussian
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rate distortion function. Similarly, it was also verified thatR1,∞(D) = R⊥(D), where the latter denotes

the quadratic-Gaussian rate distortion function for source un-correlated distortions. In Section4.9, we

extended the characterization ofR⊥(D) to cases in which there exists linear time invariant feedback

from reconstruction to source. Part of the difficulty, and importance, associated with this result stems

from the fact that we include the possibility of having unstable LTI filters in the feedback loop.

The fourth main contribution of this thesis, contained in Chapter5, was the derivation of necessary

and sufficient conditions under which the optimal filters forSNR constrained ED pairs, using scalar

quantizers and the Linear Model, are such that they yield a realization ofRa,b(D) when the scalar quan-

tizer is replaced by an AWGN channel. The case of stationary processes was solved in Section5.2. It

was shown that, in this case, the sufficient conditions developed amount to having sufficient degrees of

freedom to: i) whiten the output of the scalar quantizer; ii)yield the unique signal transfer function of a

realization ofRa,b(D), and iii) generate source-uncorrelated noise with the unique power spectral den-

sity required to realizeRa,b(D). Sufficient conditions for vector sources were establishedin Section5.3.

In this case, the SNR constrained scheme corresponds to a transform coder with feedback and individual

scalar quantizers in each subband. The SNR constraint can beany monotonically increasing function of

1
2

∑
k log2(γ(k) + 1), whereγ(k) is the SNR associated with the quantizer in thek-th subband. For this

case, the conditions can be summarized as having enough design freedom so that: i) the output signals

of the scalar quantizers are uncorrelated with the outputs of the other scalar quantizers, ii) the signal

transfer matrix must equal the unique matrix that realizesRa,b(D), and iii) the covariance matrix of the

source uncorrelated reconstruction equals the unique additive-noise covariance matrix required to realize

Ra,b(D). Interestingly, these conditions imply that, under the Linear Model and when feedback is used,

the signals that enter the scalar quantizers in an optimal causal transform coder must be correlated, at all

rates. This conclusion departs from the situation‘ with non-causal transform coders, in which, under the

Linear Model, analysis matrices that achieve total un-correlation of transform coefficients can be opti-

mal, see, e.g., [58] and the references therein. Sufficient conditions for vector processes were derived in

Section5.4. The SNR constrained setting in this case corresponds to having a set of parallel scalar quan-

tizers combined with a pre-filter matrix, an error feedback filter matrix, and a post-filter feedback matrix.

The SNR constraint may take the form of any monotonically increasing function of12
∑

k log2(γk + 1),

whereγk is the SNR associated with the quantizer in thek-th subband. It was shown there that these

conditions amount to being able to: i) make the output of the scalar quantizers to have a diagonal and

constant covariance matrix; ii) achieve an end-to-end signal transfer matrix that equals the unique signal

transform matrix characterizingRa,b(D), and iii) yield a source-uncorrelated reconstruction error with

a covariance matrix that equals the unique covariance matrix of source uncorrelated distortion required
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to realizeRa,b(D). When this scheme is associated with a filter bank, this result implies that, when

feedback is available, an optimal filter bank does not need tosatisfy either the un-correlation condition

or the majorization condition. In all cases, part of the applicability of this result stems from the fact that

it allows one to find the optimal filters, matrices, or filter matrices, for ED pairs that minimize distortion

for a given operational bit-rate.

The last main contribution of this thesis, developed in Chapter 6, is the introduction of an iterative

procedure which allows one to obtain upper bounds on the causal rate-distortion function for Gaussian

stationary sources under the MSE distortion criterion. Thebound obtained with this procedure, denoted

by the functionRitc (D), is tighter than0.5 bits per sample, at all rates. To the best of the author’s

knowledge, this is the tightest general bound for Gaussian stationary sources with memory available

in the literature. Moreover, it was shown that, if there exists a realization of the causal rate distortion

function, denoted byRitc (D), in which the reconstruction error is jointly stationary with the source, then

Ritc (D) = Ritc (D). The iterative procedure proposed here also yields a characterization of filters which,

when employed in a feedback quantizer using entropy coded scalar quantization and subtractive dither,

achieve an operational rate that exceedsRitc (D) by not more than0.254 bits/sample. This operational

rate constitutes an upper bound on the minimum operational rate achievable by any causal source coder

for Gaussian stationary sources and MSE distortion criterion.

7.3 Directions for Future Research

The results presented in this thesis are related to a number of related unsolved problems, opening the

door to possible solutions. The following is a list of a few ofthese problems, some of which are already

being considered by the author.

1. There are several optimal filter design problems under architectural constraints that haven’t been

treated in this thesis. A particularly challenging case is the one in which one can only measure the

output of the scalar quantizer, but not inject signals afterit, and one can only inject signals before

the quantizer, but not measure signals before it. This situation is more restrictive than the design

optimization problem solved in Section3.6, where it was possible to inject and measure signals

before quantization. The former problem is of practical importance, for example, when only one

sensor is available (the one in the encoder), and where the transfer function from the quantized

signal to the reconstructed signal has been fixed and cannot be altered.

2. The optimal filters characterized in Chapter3 were not subject to complexity constraints such

as filter order. In some cases, as it happens when optimizing the three filters, the expressions
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obtained correspond to non-rational filters, which can be approximated arbitrarily well by using

rational filters of sufficiently large order. It would be useful to obtain bounds on the performance

degradation that would arise from imposing constraints on the order of the filters. Characterizing

the optimal, un-restricted order filters first, and then approximating their characteristics with finite-

order filters would provide a (top-down) design method for designingΣ∆ modulators, alternative

to the (bottom-up) design methodologies usually describedin the literature, see, e.g., [43, 45, 78,

172]. The merits of such method are yet to be determined.

3. The asymptotic decay rate of the reconstruction MSE with the oversampling ratio for dithered

quantization with clipping obtained in Section3.12.3involved the use of several loose inequalities.

This suggests that faster decay rates could be obtained.

4. A challenging and important direction of future researchis the characterization of the WCMSE-

RDF, with arbitrary weights, for situations in which there is LTI feedback between reconstruction

and source, and where one or more transfer functions in the loop is unstable. Solving this problem

would be an important step toward finding a solution to the open problem of optimal design of

networked control loop systems under data-rate constraints.

5. It would be of practical interest to find the weights of the WCMSE that better represent perceived

distortion in image processing applications. Once such weights are determined, it would be pos-

sible to design WCMSE-optimal image coders based on the results presented in Chapters4 and5.

The perceived distortion-rate performance of such image coders could then be assessed by subjec-

tive or objective tests and compared to “state of the art” image compression methods.

6. As discussed in Chapter6, the stationary causal RDF introduced in Definition6.4 would corre-

spond to the information-theoretic RDF if there exists a realization of the latter in which recon-

struction error is jointly stationary with the source. The existence of such a realization seems a

reasonable conjecture, which, to the best of the author’s knowledge, has not been proven.

7. A refinement of the iterative procedure introduced in Chapter6 (page204) could be obtained if the

convexity of the following optimization problem could be demonstrated: In relation to the scheme

shown in Fig.6.3, for a given SNRγ = σ2
v/σ

2
n and a given feedback filterF (z), find the optimal

causalfilters A(z), B(z) andW̃ (z). If the latter optimization problem is convex, then Step 4

in Iterative Procedure 1 could be carried out by repeating iteratively the following steps: a) first

makeW̃ (z) be the causal Wiener filter for the source{x(k)} correlated by additive noise with

PSDσ2
n

∣∣B(ejω)
∣∣2 ∣∣1− F (ejω)

∣∣2, then, b) use Theorem3.5to find the optimalA(z) andB(z). In
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comparison with the method for solving Step 4 described on page205, the former procedure has

the advantage of being, although iterative, more analytical.
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